Precision electroweak capabilities of ILC

LCWS 2019

Roman Pöschl

Based on material of a number of distinguished colleagues

Sendai Japan – October/November 2019

- ILC is more than a Higgs Factory
- Many new physics models have impact on electroweak processes e.g. 2f processes
- Z pole is "pure" Z => Therefore new physics (or not) due to Z has to be pinned down
- Many questions at Grenada to ILC capabilities on the pole
 - Some answers were at hand (arXiv: 1905.00220)

- 0.23159 ± 0.00041 0.23098 ± 0.00026
- 0.23221 ± 0.00029
- 0.23220 ± 0.00081
 - 0.2324 ± 0.0012
- 0.23153 ± 0.00016

e+e- Physics program

- All Standard Model particles within reach of planned e+e- colliders
- High precision tests of Standard Model over wide range to detect onset of New Physics
- Machine settings can be "tailored" for specific processes
 - Centre-of-Mass energy
 - Beam polarisation (straightforward at linear colliders)

$$\sigma_{P,P'} = \frac{1}{4} \left[(1 - PP')(\sigma_{LR} + \sigma_{RL}) + (P - P')(\sigma_{RL} - \sigma_{LR}) \right]$$

• **Background free** searches for BSM through beam polarisation

ILC Running Scenarios

In 2019 – Revision of capabilities to run on the Z Pole - GigaZ

	sgr				
	(-,+)	(+,-)	(-,-)	(+,+)	sum
luminosity $[fb^{-1}]$	40	40	10	10	
$\sigma(P_{e^-}, P_{e^+}) \text{ [nb]}$	83.5	63.7	50.0	40.6	
Z events $[10^9]$	2.4	1.8	0.36	0.29	4.9
hadronic Z events $[10^9]$	1.7	1.3	0.25	0.21	3.4

- luminosity upgrade
- Further details see arxiv: 1908.08212

arXiv:1506.07830

• Pole running can happen before and after the

- High energies ~above tt-threshold Domain of linear colliders
- Low energies e.g. Z-pole Domain of circular machines
- Transition region, i.e. HZ threshold Comparable numbers for all proposals
- Linear colliders are more versatile to test chiral theory due to polarised
- Detailed design parameters see backup

W - Parameters

W Mass from ...:

- Constrained WW reconstruction
- Hadronic mass from hadronic W decays
- Lepton endpoints: $m_W^2 = E_l(E_b E_l), \ E_l = E_b(1 \pm \beta_W)/2$
- Dilepton pseudo mass from constrained fit
- Polarised W scan

 $\Delta m_W(MeV) = 2.4(stat.) \oplus 3.2(syst.) \oplus 0.8(\sqrt{s}) \oplus \text{theory}$

Branching ratios

From simultaneous fit to all 10 decay combinations

=>
$$\sigma_{tot}$$
 and $B_{e,\mu,\tau}$ and B_{had} = 1 – B_e – B_μ - B_τ

W width: $\Delta \Gamma_{W} = 3.2 \text{ MeV}$

See talks by G. Wilson and J.L. Singer-Anguiano on newest re

Anomalous Triple Gauge Couplings

Limits on Triple Gauge Couplings@250 GeV

• Sensitivity to triple and quartic gauge Boson couplings

• Observables depend strongly on beam polarisation

$W^- =>$ in situ measurement of beam polarisation (and luminosity)

Two fermion processes

Differential cross sections for (relativistic) di-fermion production*: $\frac{d\sigma}{d\cos\theta}(e_L^- e_R^+ \to f\bar{f}) = \Sigma_{LL}(1+\cos\theta)^2 + \Sigma_{LR}(1-\cos\theta)^2$

$$\frac{d\sigma}{d\cos\theta}(e_R^- e_L^+ \to f\bar{f}) = \Sigma_{RL}(1 - \frac{d\sigma}{d\cos\theta})$$

*add term $\sim sin^2 \theta$ in case of non-relativistic fermions e.g. top close to threshold

- Σ_{μ} are helicity amplitudes that contain couplings g_{μ} , g_{R} (or g_{ν} , g_{A})
- $\Sigma_{\mu} \neq \Sigma_{\mu}' =>$ (characteristic) asymmetries for each fermion
- Forward-backward in angle, general left-right in cross section
- All four helicity amplitudes for all fermions only available with polarised beams

$(1 + \cos \theta)^2 + \Sigma_{RR} (1 - \cos \theta)^2$

Helicity amplitudes can be analysed in several ways (not mutually exclusive):

Oblique Parameters W, Z:

$$Q_{e_i f_j} = Q_e^{\gamma} Q_f^{\gamma} + rac{g_{e_i}^Z g_{f_j}^Z}{\sin^2 heta_W \cos^2 heta_W} rac{s}{s - M_Z^2 + \mathrm{i}\Gamma_Z M_Z} + rac{s}{m_W^2} f_{i,j}(W,Y)$$

Contact interactions with e.g. compositeness scale Λ :

$$Q_{e_i f_j} = Q_e^{\gamma} Q_f^{\gamma} + \frac{g_{e_i}^Z g_{f_j}^Z}{\sin^2 \theta_W \cos^2 \theta_W} \frac{s}{s - M_Z^2 + i\Gamma_Z M_Z} + \frac{g_{contact}^2}{2\Lambda^2} \eta_{e_i f_j}$$

New propagators in concrete models of new physics:

$$Q_{e_{i}f_{j}} = Q_{e}^{\gamma}Q_{f}^{\gamma} + \frac{g_{e_{i}}^{Z}g_{f_{j}}^{Z}}{\sin^{2}\theta_{W}\cos^{2}\theta_{W}} \frac{s}{s - M_{Z}^{2} + i\Gamma_{Z}M_{Z}} + \sum \frac{g_{e_{i}}^{Z'}g_{f_{j}}^{Z'}}{\sin^{2}\theta_{W}\cos^{2}\theta_{W}} \frac{s}{s - M_{Z'}^{2} + i\Gamma_{Z}M_{Z}} + \sum \frac{g_{e_{i}}^{Z'}g_{W}^{Z'}}{\sin^{2}\theta_{W}\cos^{2}\theta_{W}} \frac{s}{s - M_{Z'}^{2} + i\Gamma_{Z}M_{Z}} + \sum \frac{g_{e_{i}}^{Z'}g_{W}^{Z'}}{\sin^{2}\theta_{W}} \frac{s}{s - M_{Z'}^{2} + i\Gamma_{Z}M_{Z}} + \sum \frac{g_{e_{i}}^{Z'}g_{W}^{Z'}}{\sin^{2}\theta_{W}\cos^{2}\theta_{W}} \frac{s}{s - M_{Z'}^{2} + i\Gamma_{Z}M_{Z}} + \sum \frac{g_{e_{i}}^{Z'}g_{W}^{Z'}}{\sin^{2}\theta_{W}} \frac{s}{s - M_{Z}^{2} + i\Gamma_{Z}M_{Z}} + \sum \frac{g_{e_{i}}^{Z'}g_{W}^{Z'}}{\sin^{2}\theta_{W}\cos^{2}\theta_{W}} \frac{s}{s - M_{Z}^{2} + i\Gamma_{Z}M_{Z}} + \sum \frac{g_{e_{i}}^{Z'}g_{W}^{Z'}}{\sin^{2}\theta_{W}} \frac{s}{s - M_{Z}^{2} + i\Gamma_{Z}M_{Z}} + \sum \frac{g_{e_{i}}^{Z'}g_{W}^{Z'}}{\sin^{2}\theta_{W}} \frac{s}{s - M_{Z}^{2} + i\Gamma_{Z}M_{Z}} + \sum \frac{g_{e_{i}}^{Z'}g_{W}^{Z'}}}{\sin^{2}\theta_{W}} \frac{s}{s - M$$

Always with I,j being the helicities of the initial state electron e and the final state fermion f

Roman Pöschl

Partial fermion width:

$$R_f = \frac{N_f}{N_{had}} = \frac{(g_f^L)^2 + (g_f^R)^2}{\sum_{i=1}^{n_q} [(g_i^L)^2 + (g_i^R)^2]}$$

Left-right asymmetry:

$$A_{LR} = \frac{1}{|\mathcal{P}_{eff.}|} \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \mathcal{A}_e = \frac{(g_f^L)^2 - (g_f^R)^2}{(g_i^L)^2 + (g_i^R)^2} \sim 1 - 4 \sin^2 \theta_{eff.}^{\ell}$$

Forward-backward asymmetry:

$$A_{FB}^{f} = \frac{\sigma_{F} - \sigma_{B}}{\sigma_{F} + \sigma_{B}} = \frac{3}{4} \mathcal{A}_{e} \mathcal{A}_{f} \text{ for } \mathcal{P}_{e} = 0.$$

Left-right-forward-backward asymmetry:

$$A_{FB,LR}^f = \frac{(\sigma_F - \sigma_B)_L - (\sigma_F - \sigma_B)_R}{(\sigma_F + \sigma_B)_L + (\sigma_L + \sigma_l)_R} = -\frac{3}{4}\mathcal{A}_f$$

Roman Pöschl

- Sensitive to sum of coupling constants
- Available at linear and circular colliders

- Direct sensitivity to Zee vertex

• e.g.
$$P_{_{_{7}}} \sim A_{_{e}}$$

- "Classical" observable to study P-violating effects in ee->ff
- Available at circular and linear colliders
- Without beam polarisation interpretation is always model dependent
 - Combination of asymmetries above
 - Only available linear colliders due to beam polarisation
 - Direct and model independent measurement of A_r

• Only available at linear colliders due to beam polarisation • Circular colliders need auxiliary measurement

Oblique parameters

\sqrt{s}	
HL-LHC	1
ILC250	3.
ILC500	1.
ILC1000	0.3
500 GeV, no beam pol.	2.

- ILC250 outperforms LHC
- ILC500 and above outperforms e+e- machines w/o polarisation (at 4ab⁻¹)

• Beam polarisation essential to disentangle effects from W and Y

- SSM is "carbon" copy of SM Z and used as common metric in generic Z' searches
- ALR introduces an "ad hoc" SU(2)_R and a Z' with orthogonal couplings to the fermions
- X, ψ , η are linear combinations of bosons appearing in Grand Unified Theories with couplings orthogonal to the SM Z

Typical mass reach 5-10 TeV

- Reach shown for $e_1 \square$, \square
- Adding quarks would improve limits

Decomposing ee->bb – Differential cross section

Full simulation study (with ILD concept), Benchmark reaction

- Experimental challenge: Measurement of b-quark charge on event-by-event basis
- Long lever arm in $\cos \theta_{h}$ to extract from factors or couplings $\frac{d\sigma^{I}}{d\cos\theta} = S^{I}(1+\cos^{2}\theta) + A^{I}\cos\theta \qquad I = L, R \quad \frac{\text{Form factors/couplings}}{\text{from S and A}}$

- ILC/GigaZ with ~10⁹ Z
- Sensitivity to Z/Z' mixing
- Sensitivity to vector (and tensor) couplings of the Z
 - the photon does not "disturb"

- Sensitivity to interference effects of Z and photon!!
- Measured couplings of photon and Z can be influenced by new physics effects
- Interpretation of result is greatly supported by precise input from Z pole

Precision on couplings and helicity amplitudes in ee->bb

- Couplings are order of magnitude better than at LEP
 - In particular right handed couplings are much better constrained
- New physics can also influence the Zee vertex
 - in 'non top-philic' models
- Full disentangling of helicity structure for all fermions only possible with polarised beams!!

New resonances

- ALR is "simple counting" measurement
- Errors?
 - On Z-Pole
 - Energy dependency $(dA_{IR}/d\sqrt{s} \sim 2x10^{-5}/MeV)$ due to γ/Z interference
 - Need excellent calibration of \sqrt{s} , 1 MeV seems possible
 - Beam polarisation (Blondel scheme and polarimeters):
 - Residual uncertainty of $\Delta A_{IR} = 0.5 \times 10^{-4}$ seems possible
 - Details see talk on Thursday in Track 1 session
 - Precision $\Delta A_{\mu} = 1 \times 10^{-4}$ is a realistic assumption for GigaZ

$$\delta {
m sin}^2 heta_{
m eff.}^\ell \sim 1.3 \cdot 10^{-5}$$

- Radiative return
 - Mainly limited by statistics $\Delta A_{\mu} = 1.4 \times 10^{-4}$
 - Beam polarisation $\Delta A_{IR} = 0.5 \times 10^{-4}$ (More processes available)
 - Energy dependence 1000 x weaker than on Z-pole

Precision on Z-pole

- · Precise measurement of $\sin^2 \theta_{\text{eff}}^{\ell}$
 - Ten times better than LEP/SLD and competitive with FCC

 - Polarisation compensates for ~30 times luminosity • ... and A_{IR} at LC can benefit from hadronic Z decays
 - No assumption on lepton universality at LC
- Complete test of lepton universality
 - Precisions of order 0.05%
- Note excellent measurement of quark asymmetries See above for ee->bb at 250 GeV • More details in talks by A. Irles and R.P. in

 - parallel sessions

Example: b couplings and helicity amplitudes

N.B.: ee->cc is new kid on the block See talk in parallel session by A. Irles

- Spectacular sensitivity to new physics in Randall Sundrum Models with warped extra dimensions
 - Complete tests only possible at LC
 - Discovery reach O(10 TeV)@250 GeV and O(20 TeV)@500 GeV
- Pole measurements critical input
 - Only poorly constrained by LEP
- Pole measurements will (most likely) influence also top electroweak precision program
 - (t,b) doublet

What about the Higgs?

Fitting Higgs Couplings – Kappa and EFT

Couplings to Higgs Boson in Standard Model

Analysis using Kappa-fit:

- Simple scaling of SM-couplings
- Implies that Higgs coupling to Z in production and decay are identical
- No new operators

Analysis using EFT-fit:

- Introducing set of SU(2)xU(1) compatible operators
- e.g. breaks simple relation between Higgs production and decay
- Total width and Higgs to invisible as free parameters
- Receives additional input from e.g. ee->WW and EWPO

$$\frac{\Gamma(h\to ZZ^*)}{SM} = \kappa_Z^2 \ ,$$

$$\Gamma(h \to ZZ^*)/SN$$

 $\sigma(e^+e^- \to Zh)/SN$

 $\frac{\sigma(e^+e^- \rightarrow Zh)}{SM}$ $=\kappa_z^2$

EFT Framework and EWPO

Corrections to Zee-vertex due to additional terms in EFT

- Model independent, clean $A_{_e}$ from $A_{_{LR}}$ and $\varGamma_{_e}$ from $R_{_e}$ to constrain EFT fit
 - (again) No assumption of Lepton Universality
- Mild but visible improvement on some Higgs couplings at 250 GeV
 - Effect stronger in fit presented in 1905.03764 (see backup and talk by G. Durieux)

4

• EFT adds additional spin structure to ZH

• Precision for 2ab⁻¹ polarised = 5ab⁻¹ unpolarised

- ILC is electroweak precision machine
 - Most of the electroweak parameters are limited by systematics, not statistics
- ILC can (should) be run on the Z-pole
 - Electroweak precision observables deliver decisive input for interpretation at higher energies
- Full exploitation of physics potential by large energy coverage and polarised beams
 - Clean model independent measurements due to beam polarisation
 - => Superior to circular colliders due to larger set of observables
 - Tests of lepton universality
 - Measurement of patterns for indirect discovery of new physics
 - Spectacular mass reach for new physics already art 250 GeV demonstrated
 - Flexibility of beam energy allows for systematic tracing of the the onset of new physics
- Energy expandability opens access to
 - Top quark precision studies including tth (see talk by M. Perello)
 - Access to HHH coupling (see talk by G. Durieux)
 - Flexible response to produce directly new particles (to not get stucked just before the "new" Higgs)

Heavy Higgs decays at LHC

Plot by F. Maltoni, Seminar at LAL, Comment by R.P.

Roman Pöschl

Backup

- SM does not provides no explanation for mass spectrum of fermions (and gauge bosons)

- Fermion mass generation closely related to the origin electroweak symmetry breaking

- Expect residual effects for particles with masses closest to symmetry breaking scale

Strong motivation to study chiral structure of heavy quark vertices in high energy e+e- collisions

New physics below tt threshold? - Example b quark couplings

- High precision e+e- collider will give final word on anomaly
- In case it will persist polarised beams will allow for discrimination between effects on left and right handed couplings
- Randall Sundrum Models generate basically automatically a symmetry group of type SU(2)

Randall Sundrum Models Djouadi/Richard '06

	\sqrt{s}	beam polarisation	∫Ldt for Higgs	R&D ph
ILC	0.1 - 1 TeV	e-: 80% e+: 30%	2000 fb-1 @ 250 GeV 200 fb-1 @ 350 GeV 4000 fb-1 @ 500 GeV	TDR comple in 20 ⁻
CLIC	0.35 - 3 TeV	e-: (80%) e+: 0%	1000 fb-1 @ 380 GeV 2500 fb-1 @ 1.5 TeV 5000 fb-1 @ 3 TeV	CDR compl in 20 ⁻
CEPC	90 - 240 GeV	e-: 0% e+: 0%	5600 fb-1 @ 240 GeV	CDR compl in 20 ⁻
FCC-ee	90 - 350 GeV	e-: 0% e+: 0%	5000 fb-1 @ 250 GeV 1700 fb-1 @ 350 GeV	CDR compl in Jan 2

Table courtesy of J. Brau

Roman Pöschl

Open questions

TRA DIMENSIONS? OARK MATTER? H1665 CIDARK ENERGY? SUPERSYMMETRY? UNIFICATION ? OURNTUM UNIVERSE?

The Standard Model is complete

- We know that there exists at least one fundamental scalar with a non-vanishing expectation value
- We don't know what shapes the potential and whether the potential is the footprint of a larger mass scale

Two fermion production and asymmetries

- SU(2), xU(1), symmetry of Standard Model introduces forward backward asymmetry and Left-Right asymmetry, i.e. $A_{i1} \neq A_{iR} = >$ Observables highly dependent on beam polarisation
- New physics implying **new vector bosons** will modify coefficients and asymmetries
- Discovery potential in e+e- is supported best by polarised beams

Feebly interacting particles – A summary

Light scalar may be missing piece to trigger first order 1st phase transition and/or being the radion in extra dimension theories

- - Statistics helps at lowest masses
- better than ILC
 - Backgrounds taken correctly into account?
 - Similar at stable particle level

e+e- colliders extend limits considerably w.r.t. LHC

• CEPC, FCCee (>Z pole) limits order of magnitude

Circular Electron-Positron Colliders

- ~100 km storage rings
- Coupled to hadron collider proposal
- 90 350 GeV cms energy
- No long. beam polarisation
- CDR completed January 2019 http://fcc-cdr.web.cern.ch

- ~100 km storage rings
- Coupled to hadron collider proposal
- 90 240 GeV cms energy
- No long. beam polarisation
- CDR completed September 2018
- Arxiv:1809.00285

Linear Electron-Positron Colliders

Roman Pöschl

Energy: 0.1 - 1 TeV Electron (and positron) polarisation TDR in 2013 + DBD for detectors Footprint 31 km

Initial Energy 250 GeV – Footprint ~20km

Energy: 0.4 - 3 TeV

CDR in 2012

- Footprint 48km
- Initial Energy 380 GeV

New physics?

EFT: Two distinct observations

Observables at fixed mass m (e.g. Z pole of Higgs decays)

$$\frac{\sigma}{\sigma_{SM}}\approx |1+\frac{c_6m^2}{\Lambda^2}|^2$$

Increasing UV scales probed in EFT achieved solely by increasing the measurement precision $c_{e} \sim (g^{*})^{2}$ Typical experimental precision 0.1-1% High energy tails of distributions (e.g. Drell-Yan Productions

 $\frac{\sigma}{\sigma_{SM}} \approx |1 + \frac{c_6 E^2}{\Lambda^2}|^2$

Increasing UV scales probed in EFT achieved solely by increasing the energy scale of measurement precision

Typical experimental precision 10%

New physics?

Polarized beams play a crucial role in disentangling the two spin structures

$$\sigma = \frac{2}{3} \frac{\pi \alpha_w^2}{c_w^4} \frac{m_Z^2}{(s - m_Z^2)} \frac{2k_Z}{\sqrt{s}} \left(2 + \frac{E_Z^2}{m_Z^2}\right) \cdot Q_Z^2 \cdot \left[1 + 2a + 2\frac{3}{(2a)}\right]$$

The a and b coefficients depend on beam polarization:

$$e_{L}^{-}e_{R}^{+} \qquad Q_{ZL} = \left(\frac{1}{2} - s_{w}^{2}\right), \qquad a_{L} = -c_{H}$$

$$b_{L} = c_{w}^{2}\left(1 + \frac{s_{w}^{2}}{1/2 - s_{w}^{2}}\frac{s - m_{Z}^{2}}{s}\right)(s)$$

$$e_{R}^{-}e_{L}^{+} \qquad Q_{ZR} = \left(-s_{w}^{2}\right), \qquad a_{R} = -c_{H}$$

$$b_{R} = c_{w}^{2}\left(1 - \frac{s - m_{Z}^{2}}{s}\right)(sc_{WW})$$

• Angular distributions in $e^+e^- \rightarrow hZ$ can also be used, but have weaker analyzing power and require more luminosity to achieve the same result

M. Perelstein: AWLC2017

 $\left[\frac{3\sqrt{s}E_Z/m_Z^2}{2+E_Z^2/m_Z^2}\right] b$

 $8c_{WW}$

Higgs Recoil Mass:

$$M_{h}^{2} = M_{recoil}^{2} = s + M_{Z}^{2} - 2E_{Z}\sqrt{s}$$

- from e+e- colliders

DE L'ACCÉLÉRATEUR L I N É A I R E

• Clean and sharp peak in Z recoil spectrum

• Illustrates precision that can be expected

Higgs couplings – Impact of TGC

Higgs production at e+e- colliders

two important thresholds: \sqrt{s} ~ 250 GeV for ZH, ~500 GeV for ZHH and ttH

Precision on Higgs Physics – Kappa framework

- Assumption: HL-LHC basically completed before e+e- machine starts
- ILC250 already powerful program (needs however e.g. top-Yukawa as input)
- Higher energies beneficial for total width and top-Yukawa couplings (fit constraints and H->γγ)

Top Yukawa Coupling

- Coupling of Higgs to heaviest particle known today
- Up to eight final state jets

	····il(n ,	clc
√s[GeV]	550	1000	1400
L[ab-1]	4	8	2
δyt/yt[%]	2.8	2.0	2.7

The Higgs Potential

Perfect (electroweak) symmetry and massless particles

Broken (electroweak) symmetry and massive particles

Two questions:

• Shape of "today's" Higgs Potential?

$$V(\eta) = \frac{1}{2}m^2\eta^2 + \lambda \eta^3 + \frac{1}{4}\lambda \eta^4 =>$$
 Triple Higgs-self coupling

• Transition from symmetric, unbroken to broken phase?

- Coexistence Two minima at 0 and v at T

=> 1st order phase transition and development into "today's" shape at T=0

The discovered Higgs is too heavy to provoke a 1st order phase transition

=> New physics needed

- No coexistence of two minima at 0 and v

=> Cross over into "today's" shape at T=0

- New (bosonic) particle may modify λ and enable 1st order phase transition

- Impact on measurements and achievable precisions of λ ?

Deviations of λ from **SM Value**

- Remarkable sensitivity of 500 GeV machine in case of large upward deviation
- 1 TeV machine superior for large upward and downward deviations

Science drivers

Elementary Scalar?

- Higgs and top quark are intimately coupled!
 Top Yukawa coupling O(1) !
 Top mass important SM Parameter
- New physics by compositeness? Higgs <u>and</u> top composite objects?

- e+e- collider perfectly suited to decipher both particles

- Precise Top (and W) mass crucial to test compatibility of measured Higgs mass
- SM might not be sufficient to explain Higgs mass
- LHC may not reach sufficient discriminative power
- A lepton collider will for sure

Top pair production at threshold

- Decay of top quark smears out resonances in a well defined way

Top threshold scans at different e+e- colliders

Top-Higgs couplings in "presence" of heavy particles

- Heavy particles, e.g. (Kaluza Klein) "duplicas" of SM particles provoke sizable effects
- Sensitivity to CP Violation !?

Accuracy on CP conserving couplings

- e+e- collider might be up to two orders of magnitude more precise than LHC ($\sqrt{s} = 14 \text{ TeV}$)
- Large disentangling of couplings for ILC thanks to polarised beams
- Final state analysis at FCCee
 - Also possible at LC => Redundancy
- Note
 - Maximal Lumi scenario for FCCee
 - Minimal Lumi scenario for ILC (~factor 4 possible with increased lumi and improved selection)

Arxiv:1503.01325 corrected for ILC values published in 1505.06020

> LC promises to be high precision machine for electroweak top couplings EFT Analysis for CLIC predicts mass reaches well above 10 TeV

Light scalar study in ILD

Light scalar may be missing piece to trigger first order 1st transition and/or the being the radion in extra dimension theories

- New resonances cleanly dinstiguishable for large range of masses
- Sensitivity to mixing angle θ h down to 10^{-2} (taking all relevant backgrounds into account)
- ^Lnew scalar would count as "Feebly interacting Particle" (FIPS)

ILC 500 GeV, 4 ab-1 & 1 TeV, 8 ab-1 $\delta \lambda = 10\%$

CLIC 1.4 TeV, 1.5 ab-1 & 3 TeV, 2 ab-1 $\delta \lambda = 10\%$

Electroweak top couplings

Top is primary candidate to be a messenger new physics in many BSM models

Precision expected for top quark couplings will allow to distinguish between models Remark: All presented models are compatible with LEP elw. precision data

Statistical error: $\sqrt{s} \sim 500 \text{ GeV}$ L = 500 fb⁻¹

htautau

ILC is the only machine that can be built now
European XFEL gives credbility for construction

ILC Parameters

-			TDR		New
Center-of-mass energy	ECM	GeV	250	500	250
Bunch population	N	e10	2	2	2
Bunch separation		ns	554	554	554
Beam current		mA	5.78	5.78	5.78
Number of bunches per pulse	Nb		1312	1312	1312
Collision frequency		Hz	5	5	5
Electron linac rep rate		Hz	10	5	5
Beam power (2 beams)	PB	MW	5.26	10.5	5.26
r.m.s. bunch length at IP	σ	mm	0.3	0.3	0.3
relative energy spread at IP (e-)	σ_E/E	%	0.188	0.124	0.188
relative energy spread at IP (e+)	σ_{E}/E	%	0.15	0.07	0.15
Normalized horizontal emittance at					
IP	Enx	μm	10	10	5
Normalized vertical emittance at IP	Eny	nm	35	35	35
Beam polarization (e-)		%	80	80	80
Beam polarization (e+)		%	30	30	30
Beta function at IP (x)	βx	mm	13	11	13
Beta function at IP (y)	β	mm	0.41	0.48	0.41
r.m.s. beam size at IP (x)	σ	nm	729	474	516
r.m.s. beam size at IP (y)	σ	nm	7.66	5.86	7.66
r.m.s. beam angle spread at IP (x)	θ	μr	56.1	43.1	39.7
r.m.s. beam angle spread at IP (y)	θγ	μr	18.7	12.2	18.7
Disruption parameter (x)	Dx		0.26	0.26	0.51
Disruption parameter (y)	Dy		24.5	24.6	34.5
Upsilon (average)	Y		0.020	0.062	0.028
Number of beamstrahlung photons	ny		1.21	1.82	1.91
Energy loss by beamstrahlung	δ _{BS}	%	0.97	4.50	2.62
Geometric luminosity	Lgeo	e34/cm ² s	0.374	0.751	0.529
Luminosity	L	e34/cm ² s	0.82	1.79	1.35

FCC-ee Parameters

		Z	W^{\pm}	Zh	t	t
Circumference	[km]			97.756		
Bending radius	[km]			10.760		
Free length to IP ℓ^*	[m]			2.2		
Solenoid field at IP	[T]			2.0		
Full crossing angle at IP	[mrad]			30		
SR power / beam	[MW]			50		
Beam energy	[GeV]	45.6	80	120	175	182.5
Beam current	[mA]	1390	147	29	6.4	5.4
Bunches / beam	200 - 200 C 100 - 200 200	16640	2000	328	59	48
verage bunch spacing	[ns]	19.6	163	994	2763^{1}	3396??
Sunch population	[10 ¹¹]	1.7	1.5	1.8	2.2	2.3
Iorizontal emittance ε_x	nm	0.27	0.84	0.63	1.34	1.46
Vertical emittance ε_y	[pm]	1.0	1.7	1.3	2.7	2.9
Arc cell phase advances	deg	60/60	60/60		90/90	
fomentum compaction	$[10^{-6}]$	14.8	14.8		7.3	
rc sextupole families		20	08		292	
orizontal β_{π}^{*}	m	0.15	0.2	0.3	1	.0
Vertical β_{*}^{*}	[mm]	0.8	1.0	1.0	1	.6
lorizontal size at IP σ_{π}^{*}	[µm]	6.4	13.0	13.7	36.7	38.2
ertical size at IP σ_{u}^{*}	[nm]	28	41	36	66	68
nergy spread (SR/BS)	[%]	0.038/0.132	0.066/0.131	0.099/0.165	0.144/0.196	0.150/0.192
unch length (SR/BS)	mm	3.5/12.1	3.0/6.0	3.15/5.3	2.75/3.82	1.97/2.54
rab sextupole ratio	[%]	97	87	80	50	50
nergy loss / turn	[GeV]	0.036	0.34	1.72	7.8	9.2
F frequency	[MHz]		400		400	/ 800
F voltage	[GV]	0.1	0.75	2.0	4.0 / 5.4	4.0 / 6.9
ong. damping time	[turns]	1273	236	70.3	23.1	20.4
RF acceptance	[%]	1.9	2.3	2.3	3.5	3.36
Energy acceptance (DA)	1%	± 1.3	± 1.3	± 1.7	-2.8	+2.4
Synchrotron tune Q_z		-0.0250	-0.0506	-0.0358	-0.0818	-0.0872
uminosity / IP	$[10^{34}/cm^{2}s]$	230	28	8.5	1.8	1.55
lorizontal tune Q_x		269.139	269.124	389.129	389	.104
Vertical tune Q_y		269.219	269.199	389.199	389	.175
Beam-beam ξ_x/ξ_y		0.004/0.133	0.010/0.115	0.016/0.118	0.088/0.148	0.099/0.126
lifetime by rad. Bhabha	[min]	68	59	38	37	40
Actual lifetime by BS	min	> 200	> 200	18	24	18

Ζ

Roman Pöschl

E. Levichev, FCC Week 2018

CEPC Parameters

	Higgs	W	Z (3T)	Z (2T)			
Number of IPs	2						
Beam energy (GeV)	120	80	45.5				
Circumference (km)		100					
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.0	0.036			
Crossing angle at IP (mrad)		16.5×	2				
Piwinski angle	2.58	7.0	23	3.8			
Number of particles/bunch N_e (10 ¹⁰)	15.0	12.0	8	.0			
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25n	s+10%gap)			
Beam current (mA)	17.4	87.9	46	1.0			
Synchrotron radiation power /beam (MW)	30	30	16	5.5			
Bending radius (km)		10.7					
Momentum compact (10 ⁻⁵)		1.11					
β function at IP $\beta_x * / \beta_v * (m)$	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001			
Emittance $\varepsilon_r / \varepsilon_v$ (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016			
Beam size at IP $\sigma_r / \sigma_v (\mu m)$	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04			
Beam-beam parameters ξ_{ν}/ξ_{ν}	0.031/0.109	0.013/0.106	0.0041/0.056	0.0041/0.072			
RF voltage V_{RF} (GV)	2.17	0.47	0.	0.10			
RF frequency f_{RF} (MHz) (harmonic)		650 (216	816)				
Natural bunch length σ_{z} (mm)	2.72	2.98	2	2.42			
Bunch length σ_{z} (mm)	3.26	5.9	8	.5			
Betatron tune v_x/v_y		363.10 / 3	65.22				
Synchrotron tune v_s	0.065	0.0395	0.0	0.028			
HOM power/cavity (2 cell) (kw)	0.54	0.75	1.94				
Natural energy spread (%)	0.1	0.066	0.038				
Energy acceptance requirement (%)	1.35	0.4	0.23				
Energy acceptance by RF (%)	2.06	1.47	1.7				
Photon number due to beamstrahlung	0.29	0.35	0.55				
Lifetime simulation (min)	100						
Lifetime (hour)	0.67	1.4	4.0	2.1			
F (hour glass)	0.89	0.94	0.	99			
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6 32.1				

Roman P

