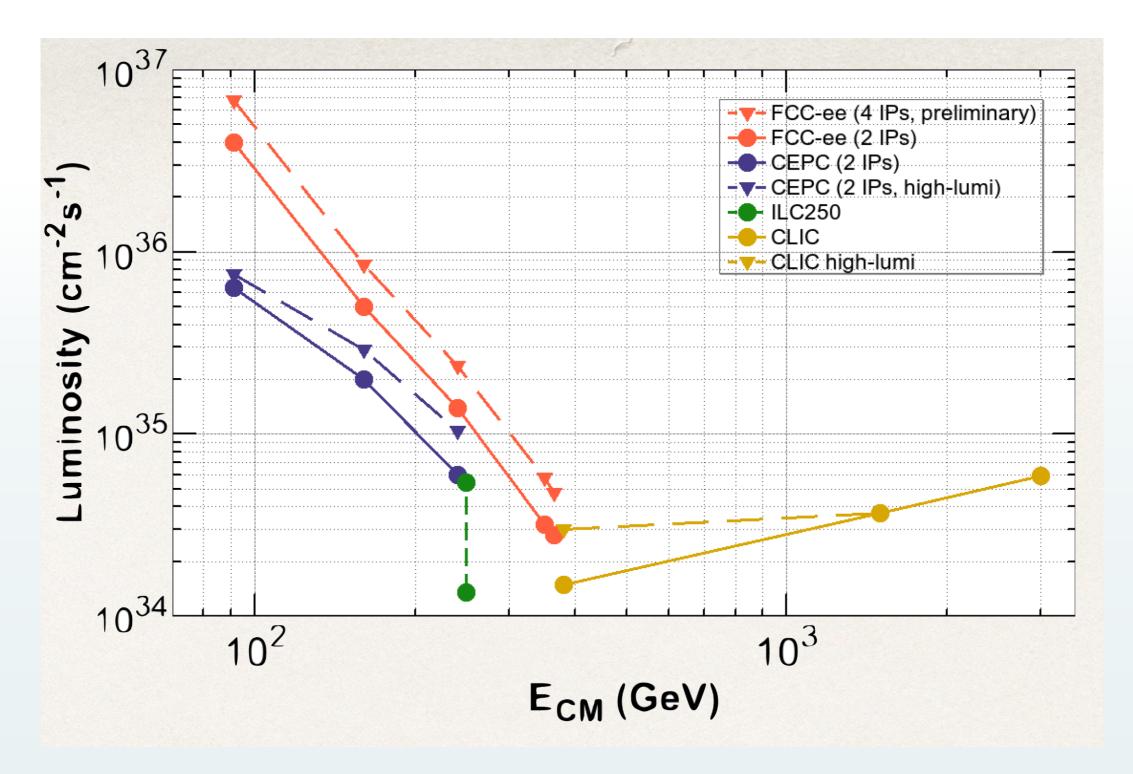
FUTURE CIRCULAR COLLIDER STUDY

PATRIZIA AZZI - INFN PADOVA (ITA) On behalf of the FCC Collider Study Group

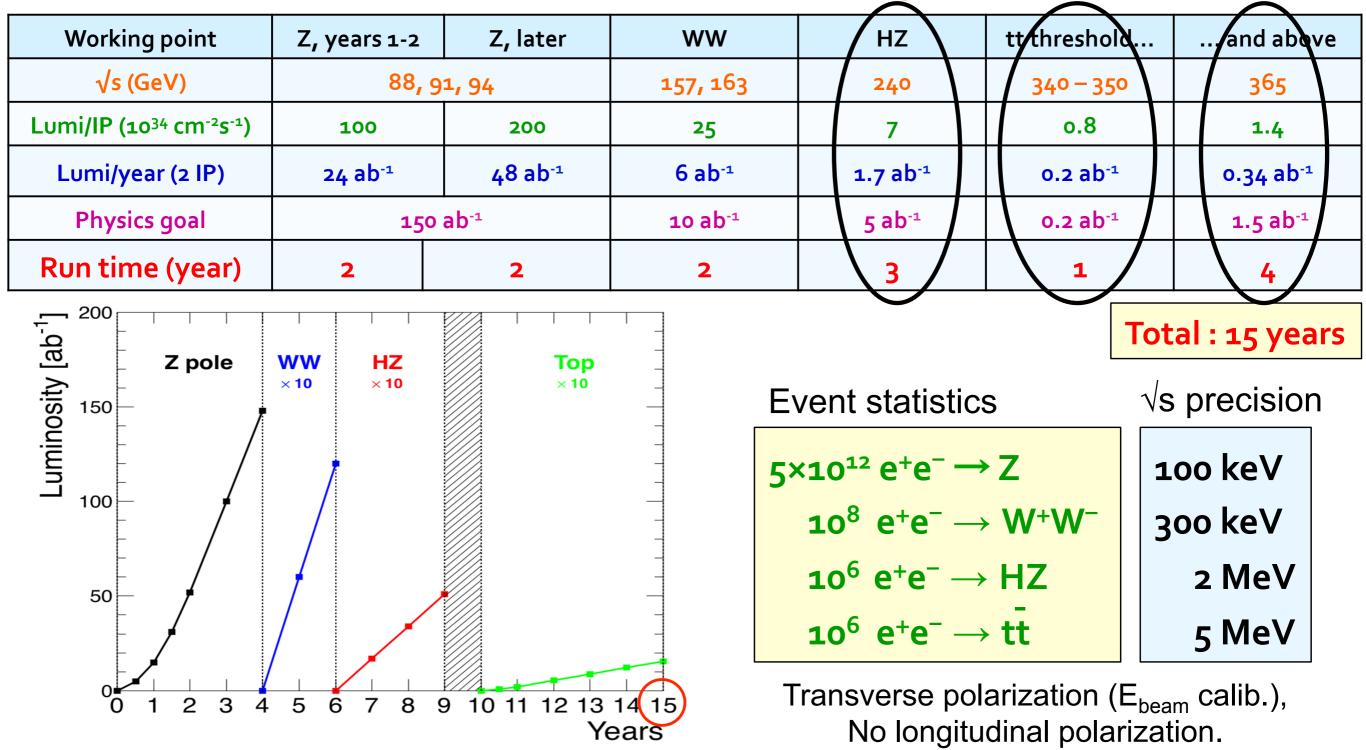
DISCOVERY MACHINE AND MORE

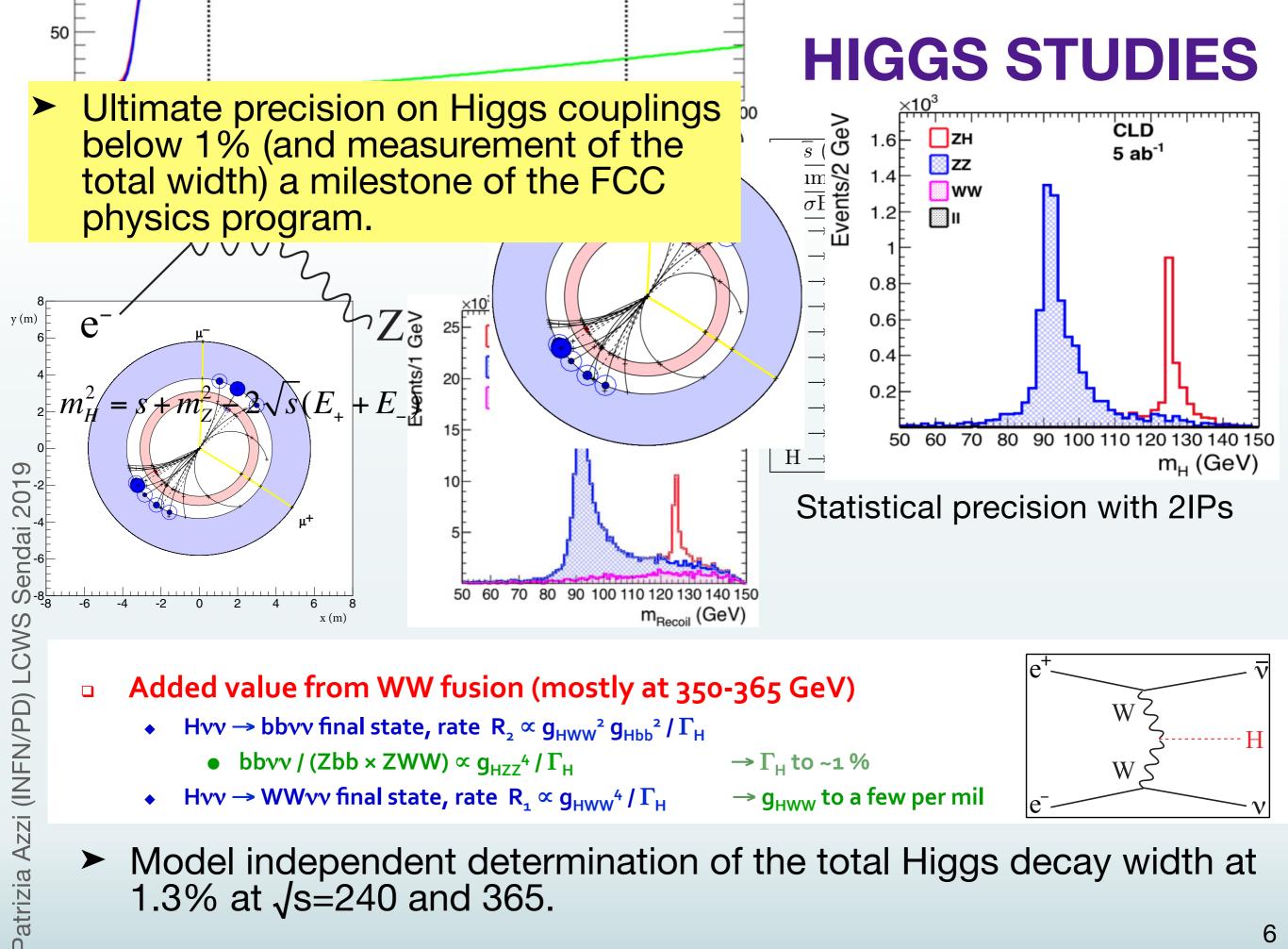

- EXPLORE the 10-100 TeV energy scale region with precision measurements of the properties of the Z,W,Higss and top particles
 - 20-50fold improved precision on EWK observables
 - 10 fold more precise and model-independent Higgs coupling measurements
- DISCOVER that the Standard Model does not fit
 - Existence of extra-weakly-coupled and Higgs-coupled particles
 - Understanding of the underlying physics structure
- DISCOVER a violation of flavour conservation/universality
- DISCOVER very weakly coupled particles in the 5-100 GeV mass range
 - Such as right handed neutrinos, dark photons, …
- DISCOVER dark matter as invisible decays of the Z or Higgs

PHYSICS DRIVEN NEEDS

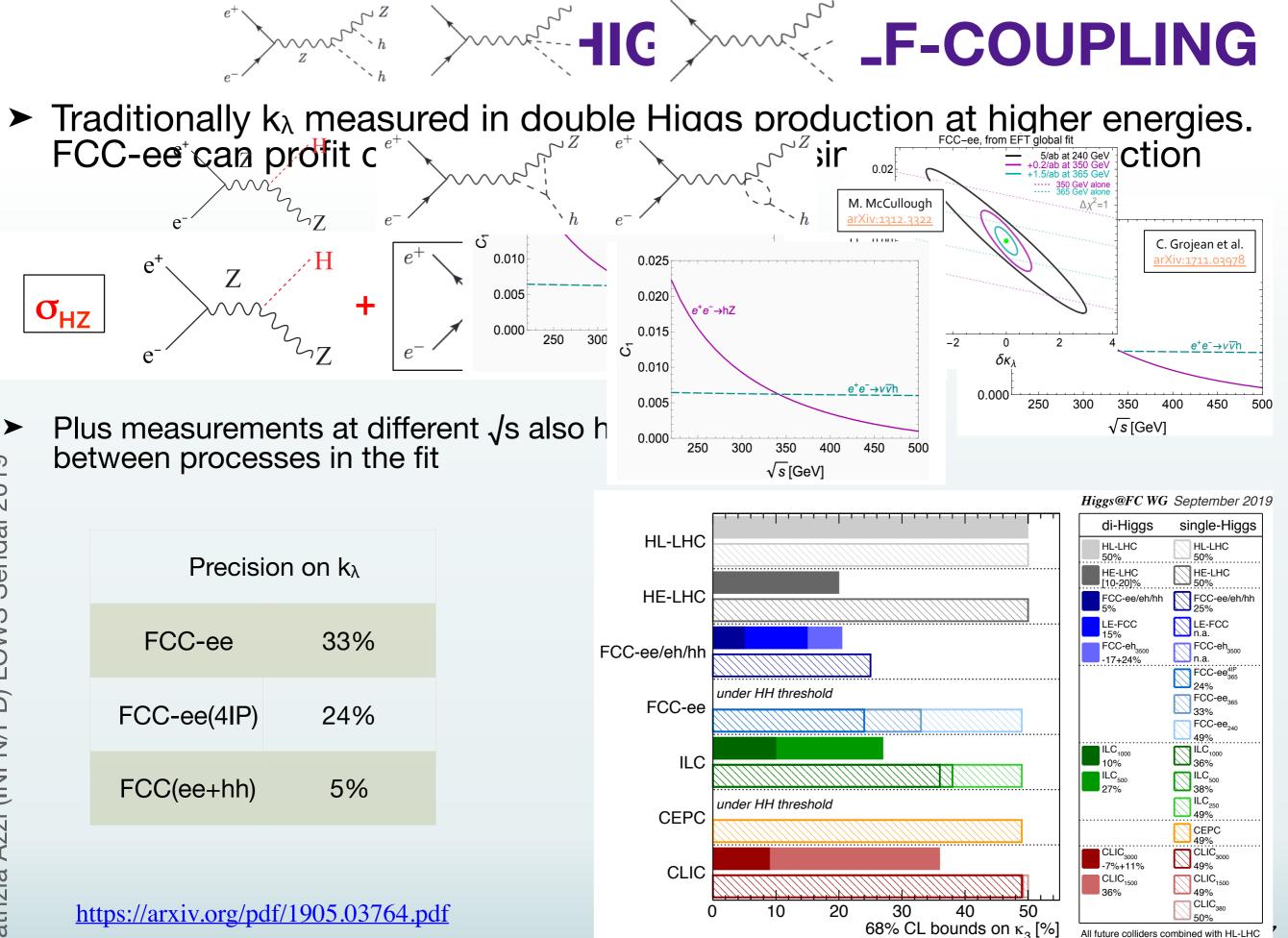
- > 100 ab^{-1} at the Z pole ($\sqrt{s}=91.2$ GeV,)
- > 30 ab^{-1} around the Z pole ($\sqrt{s}=88$ and 94 GeV)
- > 10 ab^{-1} around the WW threshold ($\sqrt{s} \sim 161 \text{ GeV}$)
- ► 5 ab^{-1} at the HZ cross section max. ($\sqrt{s}=240$ GeV)
- > 0.2 ab^{-1} around the top threshold ($\sqrt{s}=350$ GeV)
- > 1.5 ab^{-1} above the top threshold ($\sqrt{s} \sim 365$ GeV)

The FCC-ee unique discovery potential is multiplied by the presence of the four heaviest particles of the standard model in its energy range


The FCC-ee measurements help shape up the FCC-hh program and detectors

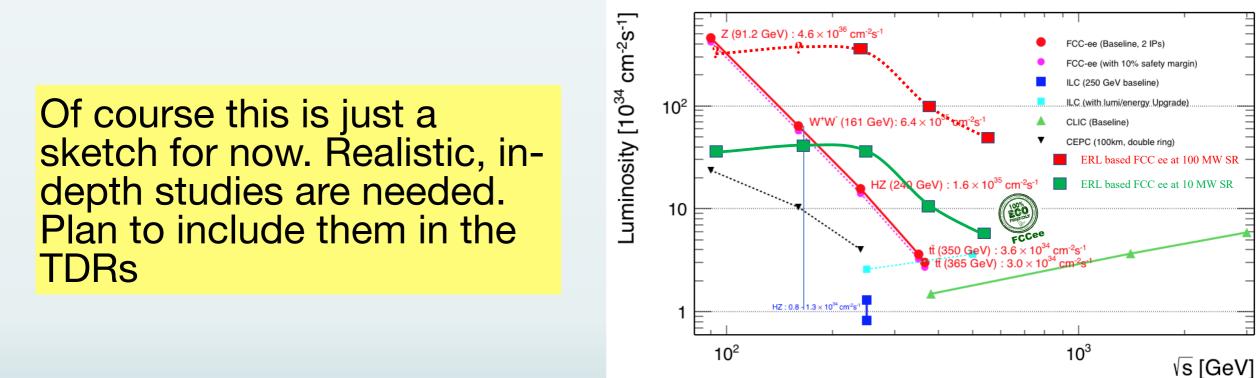


- ► High integrated luminosity at the needed E_{cm}
- Clean e+e- environment
- Precise knowledge of the center-of-mass energy and of the luminosity
- Precise detectors to be designed offering plenty of redundancy (and more than one)


OPERATION MODEL AND STATISTICS

185 physics days / year, 75% efficiency, 10% margin on luminosity

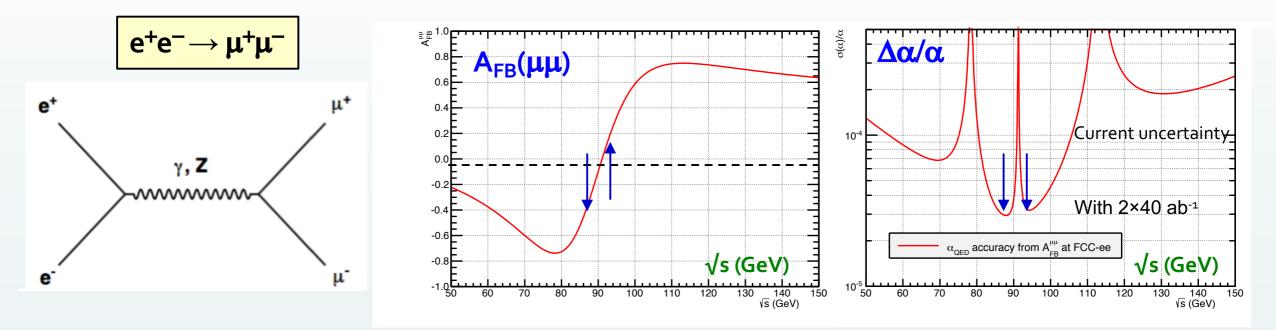
Model independent determination of the total Higgs decay width at 1.3% at $\sqrt{s}=240$ and 365.



0 Sendai 201 (INFN/PD) LCWS Patrizia Azzi

AN INTERESTING IDEA: FCC-ERL

https://arxiv.org/abs/1909.04437


- The FCC baseline strategy to access the HH production is to replace electron/positrons with protons fat 100 TeV (FCC-hh). However, the project is still open to the influence of technological developments.
- If scientifically needed, and as an intermediate step, it could be imagined to upgrade the FCCee with Energy Recovery Linac technology and run at 500 GeV or more with a luminosity 4.5(45)×10³⁴ cm⁻²s⁻¹ 10(100) MW of synchrotron radiation power.
 - Corresponding to 5-50 ab⁻¹ in 10 years
 - This might allow a statistical precision on the Higgs self coupling of about 10%

ELECTROWEAK PRECISION MEASUREMENTS

- Boils down to measuring cross sections and asymmetries
 - The dominant experimental uncertainties come from the beam energy knowledge
 - Detailed studies in new paper:

ArXiv:1909.12245v1 A.Blondel et al.

TeraZ (5 X 1012 Z)

From data collected in a lineshape energy scan:

- Z mass (key for jump in precision for ewk fits)
- Z width (jump in sensitivity to ewk rad corr)
- R_1 = hadronic/leptonic width ($\alpha_s(m_Z^2)$, lepton couplings, precise universality test)
- peak cross section (invisible width, N_{ν})
- $A_{FB}(\mu\mu)$ (sin² θ_{eff} , $\alpha_{QED}(m_Z^2)$, lepton couplings)
- Tau polarization (sin² θ_{eff} , lepton couplings, $\alpha_{QED}(m_Z^2)$)
- R_b, R_c, A_{FB}(bb), A_{FB}(cc) (quark couplings)

OkuWW (10⁸ WW)

From data collected around and above the WW threshold:

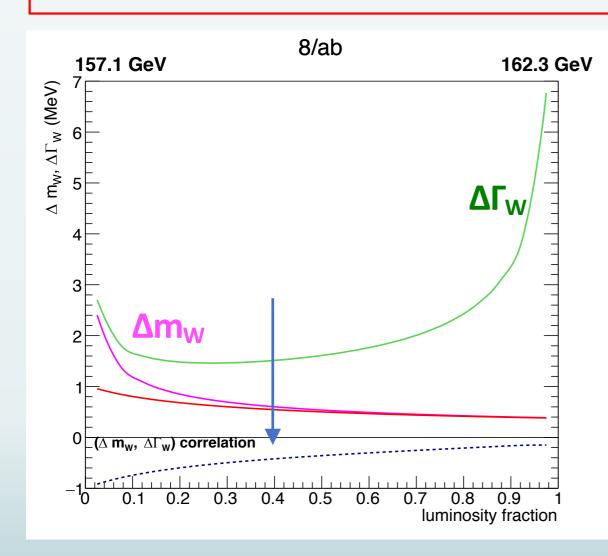
- W mass (key for jump in precision for ewk fits)
- W width (first precise direct meas)
- $R^W = \Gamma_{had} / \Gamma_{lept} (\alpha_s(m^2_Z))$
- Γ_{e} , Γ_{μ} , Γ_{τ} (precise universality test)
- Triple and Quartic Gauge couplings (jump in precision, especially for charged couplings)

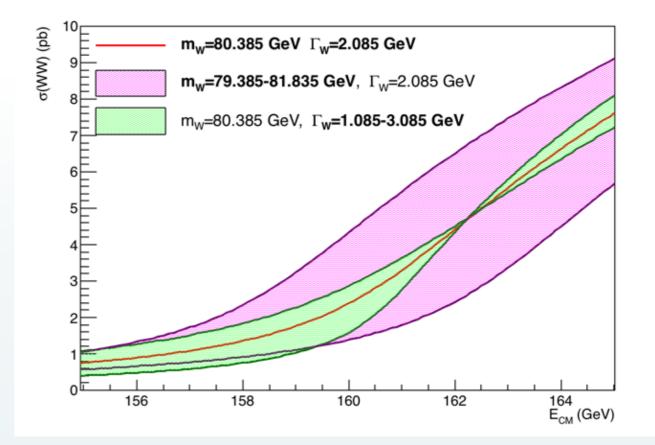
SELECTED ELECTROWEAK QUANTITIES

Observable	Present value \pm error	FCC-ee Stat.	FCC-ee Syst.	Comment and dominant exp. error
m _Z (keV)	$91,186,700 \pm 2200$	5	100	From Z line shape scan Beam energy calibration
Γ_Z (keV)	$2,495,200 \pm 2300$	8	100	From Z line shape scan Beam energy calibration
$\mathbf{R}^{\mathbf{Z}}_{\ell}$ (×10 ³)	$20,767\pm25$	0.06	0.2–1.0	Ratio of hadrons to leptons acceptance for leptons
$\alpha_{s} (m_{Z}) (\times 10^{4})$	1196 ± 30	0.1	0.4–1.6	From R_{ℓ}^{Z} above [43]
$R_b (\times 10^6)$	$216,290 \pm 660$	0.3	< 60	Ratio of $b\bar{b}$ to hadrons stat. extrapol. from SLD [44]
$\sigma_{\rm had}^0~(\times 10^3)~({\rm nb})$	$41,541 \pm 37$	0.1	4	Peak hadronic cross-section luminosity measurement
$N_{\nu} (\times 10^3)$	2991 ± 7	0.005	1	Z peak cross sections Luminosity measurement
$\sin^2 \theta_W^{\text{eff}} (\times 10^6)$	$231,480 \pm 160$	3	2–5	From $A_{FB}^{\mu\mu}$ at Z peak Beam energy calibration
$1/\alpha_{\rm QED}~({\rm m_Z})~(\times 10^3)$	$128,952 \pm 14$	4	Small	From $A_{FB}^{\mu\mu}$ off peak [34]
$A_{FB}^{b,0}$ (×10 ⁴)	992 ± 16	0.02	1–3	b-quark asymmetry at Z pole from jet charge
$A_{FB}^{pol,\tau}$ (×10 ⁴)	1498 ± 49	0.15	< 2	τ Polarisation and charge asymmetry τ decay physics
m _W (MeV)	$80,350 \pm 15$	0.5	0.3	From WW threshold scan Beam energy calibration
$\Gamma_{\rm W}~({\rm MeV})$	2085 ± 42	1.2	0.3	From WW threshold scan Beam energy calibration
$\alpha_{s} (m_{W}) (\times 10^{4})$	1170 ± 420	3	Small	From R_{ℓ}^{W} [45]
$N_{\nu} (\times 10^3)$	2920 ± 50	0.8	Small	Ratio of invis. to leptonic in radiative Z returns
m _{top} (MeV)	$172,740 \pm 500$	17	Small	From tt threshold scan QCD errors dominate
Γ_{top} (MeV)	1410 ± 190	45	Small	From tt threshold scan QCD errors dominate
$\lambda_{top}/\lambda_{top}^{SM}$	1.2 ± 0.3	0.1	Small	From tt threshold scan QCD errors dominate
ttZ couplings	$\pm 30\%$	0.5-1.5%	Small	From $E_{CM} = 365 \text{ GeV run}$

In this context would need from theory full 3-loop calculations for the Z pole and propagator EWK corrections and probably 2-loop for EWK corrections to the WW cross section. Matching these experimental precisions motivates a significant theoretical effort.

NEUTRAL COUPLINGS AND EWK ANGLE

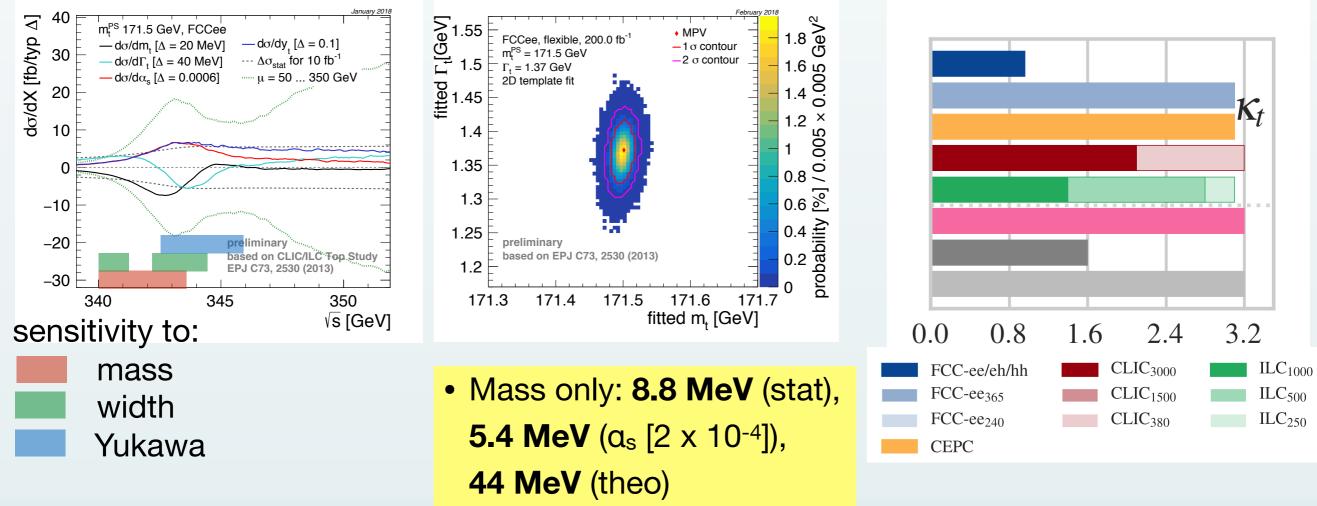

$$\mathcal{A}_e = \frac{2g_{Ve}g_{Ae}}{(g_{Ve})^2 + (g_{Ae})^2} = \frac{2g_{Ve}/g_{Ae}}{1 + (g_{Ve}/g_{Ae})^2}$$


- Muon forward backward asymmetry at pole, $A_{FB}^{\mu\mu}$ (m_z) gives sin² θ_{eff} with 5 10⁻⁶ precision (at least)
 - uncertainty driven by knowledge on CM energy (point to point energy errors)
 - assumes muon-electron universality
- Tau polarization can reach similar precision without universality assumption
 - tau pol measures A_e and A_τ , can input to $A_{FB}^{\mu\mu} = 3/4 A_e A_{\mu}$ to measure separately electron, muon and tau couplings, (together with Γ_e , Γ_{μ} , Γ_{τ})
- Asymmetries ${\rm A_{FB}}^{\rm bb}, {\rm A_{FB}}^{\rm cc}$ provide input to quark couplings together with $\Gamma_{\rm b}, \Gamma_{\rm c}$
- ➤ Tau polarization has a central role at FCC-ee
- Very large tau statistics and improved knowledge of parameters (BF, decay modeling).
- ► Also use best decay channels, $\tau \rightarrow \rho v_{\tau}$. Constraint on detector performance for γ/π°
- Measure sin²θ_{eff} with 6.6x10⁻⁶ precision

W MASS AND WIDTH

Sensitivity to mass and width is different at different E_{CM} : can optimize mass AND width by choosing carefully two energy points.

- Same concept can be used to minimize systematics (e.g. due to backgrounds)
- <u>Centre-of-mass known by resonant</u> depolarization (available at ≈ 160 GeV)
- Luminosity from Bhabha, requirements similar to Z pole case


with E₁=157.1 GeV E₂=162.3 GeV f=0.4 Δm_w=0.62 ΔΓ_w=1.5 (MeV)

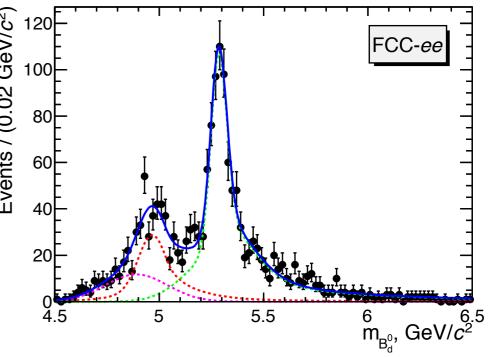
need syst control on :

- ΔE(beam)<0.35 MeV (4x10⁻⁶)
- Δε/ε, ΔL/L < 2 10⁻⁴
- Δσ_B<0.7 fb (2 10⁻³)

TOP PHYSICS

- Threshold region allows most precise measurements of top mass, width, and estimate of Yukawa coupling. Scan strategy can be optimized
 - FCC-ee has some standalone sensitivity to the top Yukawa coupling from the measurements at thresholds for a 10% precision (profiting of the better α_s).
 - But, HL-LHC result of about 3.1% already better (with FCC-ee Higgs measurements removing the model dependence)

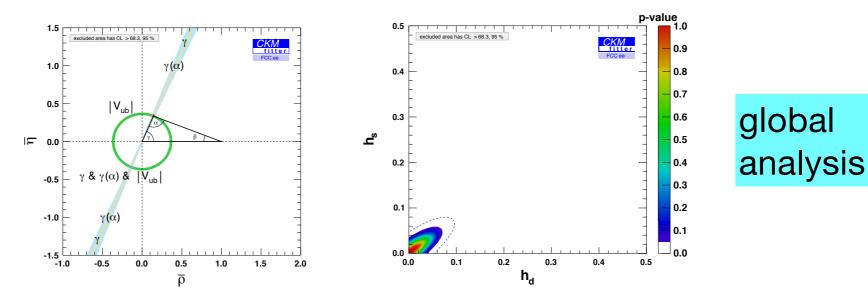
Run at 365 GeV used also for measurements of top EWK couplings (at the level of 10⁻²-10⁻³) and FCNC in the top sector.


TERA-Z - FLAVOR PHYSICS (1)

Working point	nt Lumi. / IP $[10^{34} \text{ cm}]$	$^{-2}.\mathrm{s}^{-1}]$	Tota	al lumi	i. (2 II	\mathbf{Ps}	Run time	Physics goal
\overline{Z} first phas	e 100			6 ab^{-1}	10		2	
Z second pha	ase 200		52	2 ab^{-1}	/year	•	2	150 ab^{-1}
]	Particle production (10^9)	B^0	B^-	B_s^0	Λ_b	$c\overline{c}$	$\tau^{-}\tau^{+}$	~15 times
	Belle II	27.5	27.5	n/a	n/a	65	45	
	FCC-ee	400	400	100	100	800	220	Belle's stat
								Roost at the

		2			≈ 3 120	
5	Decay mode	$\mathrm{B}^{0} \to \mathrm{K}^{*}(892)\mathrm{e}^{+}\mathrm{e}^{-}$	$B^0 \to K^*(892)\tau^+\tau^-$	$B_s(B^0) \rightarrow \mu^+ \mu^-$	_ 🖞 100	
5	Belle II	$\sim 2\ 000$	~ 10	n/a (5)		
)	LHCb Run I	150	-	\sim 15 (–)	0) 80	
)	LHCb Upgrade	~ 5000	-	$\sim 500~(50)$	st _00 _ 1	
	FCC-ee	~ 200000	~ 1000	~1000 (100)		

Yelds for flavor anomalies studies:


- b→sll yelds and $B^0 \rightarrow K^{*0}\tau^+\tau^-$
- Juli reconstruction possible

TERA-Z - FLAVOR PHYSICS(2)

CKM and CP-violation in quark – mixings

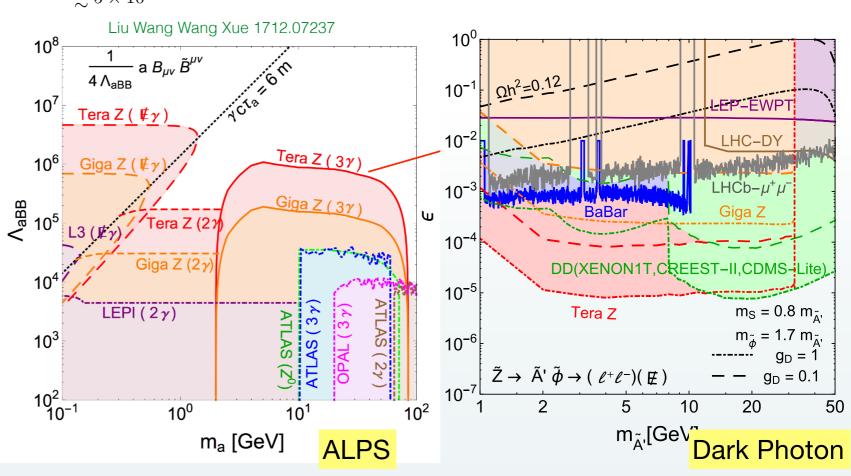
	Observable / Experiments	Current W/A	Belle II (50 /ab)	LHCb-U1 (23/fb)	FCC-ee
	CKM inputs				
	γ (uncert., rad)	$1.296\substack{+0.087\\-0.101}$	1.136 ± 0.026	1.136 ± 0.025	1.136 ± 0.004
	$ V_{ub} $ (precision)	5.9%	2.5%	6%	1%
it	Mixing-related inputs				
	$\sin(2\beta)$	0.691 ± 0.017	0.691 ± 0.008	0.691 ± 0.009	0.691 ± 0.005
	ϕ_s (uncert. rad 10^{-2})	-1.5 ± 3.5	n/a	-3.65 ± 0.05	-3.65 ± 0.01
	$\Delta m_d (\mathrm{ps}^{-1})$	0.5065 ± 0.0020	same	same	same
	$\Delta m_s (\mathrm{ps}^{-1})$	17.757 ± 0.021	same	same	same
	$a_{\rm fs}^d (10^{-4}, {\rm precision})$	23 ± 26	-7 ± 15	-7 ± 15	-7 ± 2
<u>\</u>	$a_{\rm fs}^s (10^{-4}, {\rm precision})$	-48 ± 48	n/a	0.3 ± 15	0.3 ± 2

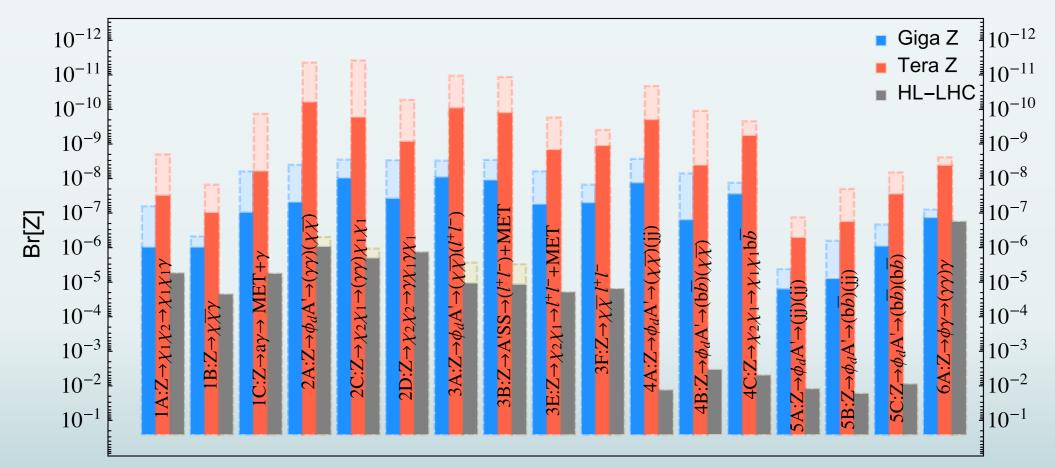
Bottomline: the constraints on BSM scale issued from *B*-mesons mixing observables with Minimal Flavour Violation $\Lambda_{NP}(\Delta F = 2) > 20 \text{ TeV}$

- Expected precisions scaled with statistics and anticipated flavour tagging performance when necessary.
- First observation of *CP* violation in *B* mixing is at reach.
- A global analysis of BSM contributions in box mixing processes, assuming *Minimal Flavour Violation* pushes the BSM energy scale to 20 TeV.

	TEI	Decay Z -> eµ	Curre	ent bound 0.75 x ⁻⁶	PHK	Decay Cee sensu Z-> eu	Cur
Visible Z decays	Visible Z decays Z → T+T-	3 x 1012 Decay 1.3 x 1011	Curren	t bound	FCC-	$Z \rightarrow \mu \tau$ ee sensitivity $Z \rightarrow \sigma \tau$	
Current bound FCC-ee sensitivity	CLFY Z decays		0.7	5 x ⁻⁶		Ζ > e τ 0 ⁻⁸	
$0.175 \times 3istration = 10.2 \times 10^{12}$	$in_3 SM_3 SM_3 < 10-5$	$10^{2} - 2 \mu T$	12:	x 10-6		Decay	Cur
$13 \times 3.96 \text{ pr}_{0}^{+} \text{g}_{-}^{-}$ 102.8×3.090^{-11}		Z -> eT	9.8	x 10-6		τ∣⊕≫ μγ	4
9.8 x 10-9s. 3 prongs 10-9 3.2 x 1010 1 vs. 5 prong 2.1 x 108	l vs. 5 prong	2.1 x 10 ⁸ Decay	Curren	t bound	FCC-e	ee T serisiti	
Current boursd3 pForg-ee sensitizex 109 1 vs. 7 prong < 67,000	CLEV prodecays	: < 67,000 τ -> μγ	4.4	× 10-8		2 × 10-9	
4.4 × 10^{-8} s. 5 prong 2 × 10^{-2} .1 × 10^{8} 1 vs 9 prong ?	l vs 9 prong	τ [?] > 3 μ	2 ×	< 10-8		0-10	
$\begin{array}{c} 1 \text{ vs 9 prong} \\ 2 \times 10^{8} \text{ vs. 7 prong} \end{array} \begin{array}{c} ? \\ 10^{-10} < 67,000 \end{array}$							
	Property	Current WA	N Contraction of the second se	FCC-ee	stat	FCC-ee sys	t
OU⊕ OU⊕ OU⊕ OU⊕ OU⊕ 17.85 – Today (2018)	Mass [MeV]	1776.86 +/	- 0.12	0.00	4	0.1	
MAS - PRICE	^{//} Electron BF [%]	17.82 +/-	0.05	0.000)	0.003	
	Muon BF	17.39 +/-	0.05	0.000		0.003	
17.75 – 17.70 – Lepton universality with	Lifetime [fs]	290.3 +/-	0.5	0.00	5	0.04	
N m _τ = 1776.86 ± 0.12 MeV 17.65 - 289 290 291		nore û î/i qı	ne obb	oortunit	ies ir	n backup	
.ल N T lifetime [fs]							

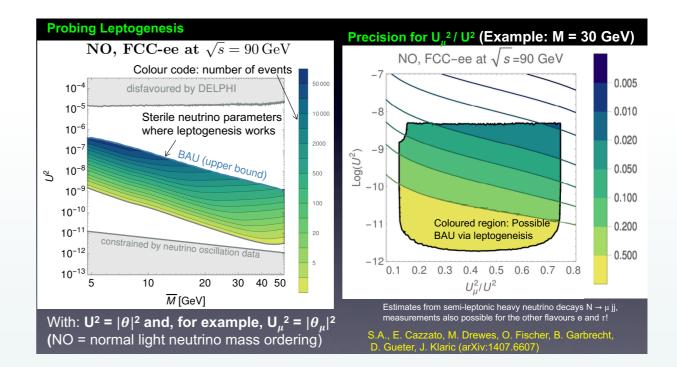
/S Patriz

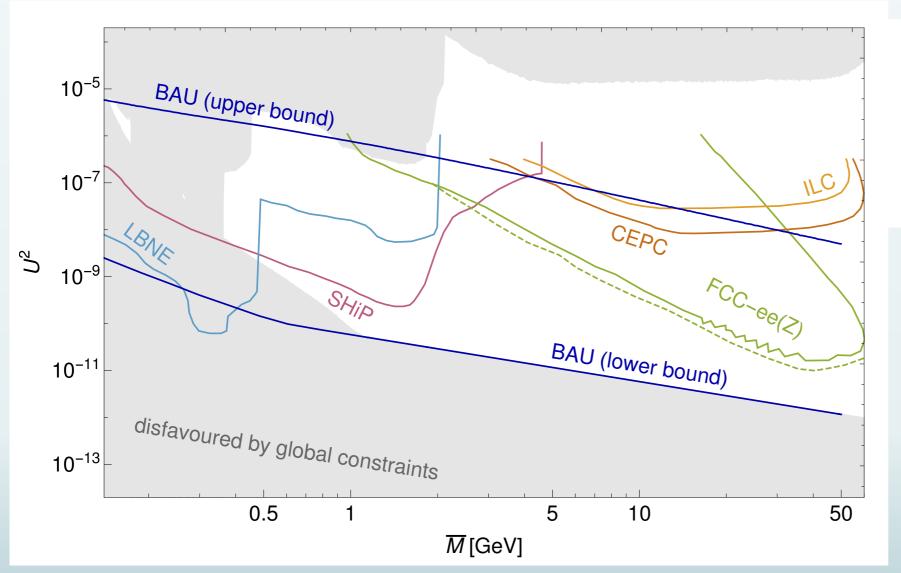

BSM DIRECT SEARCHES - Z EXOTIC DECAYS

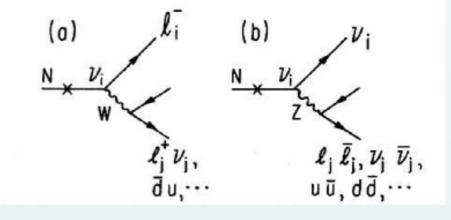

Several models that describe possible exotic Z decays in dark sector candidate particles have been studied

 $c_1 \alpha_1$

 c_1

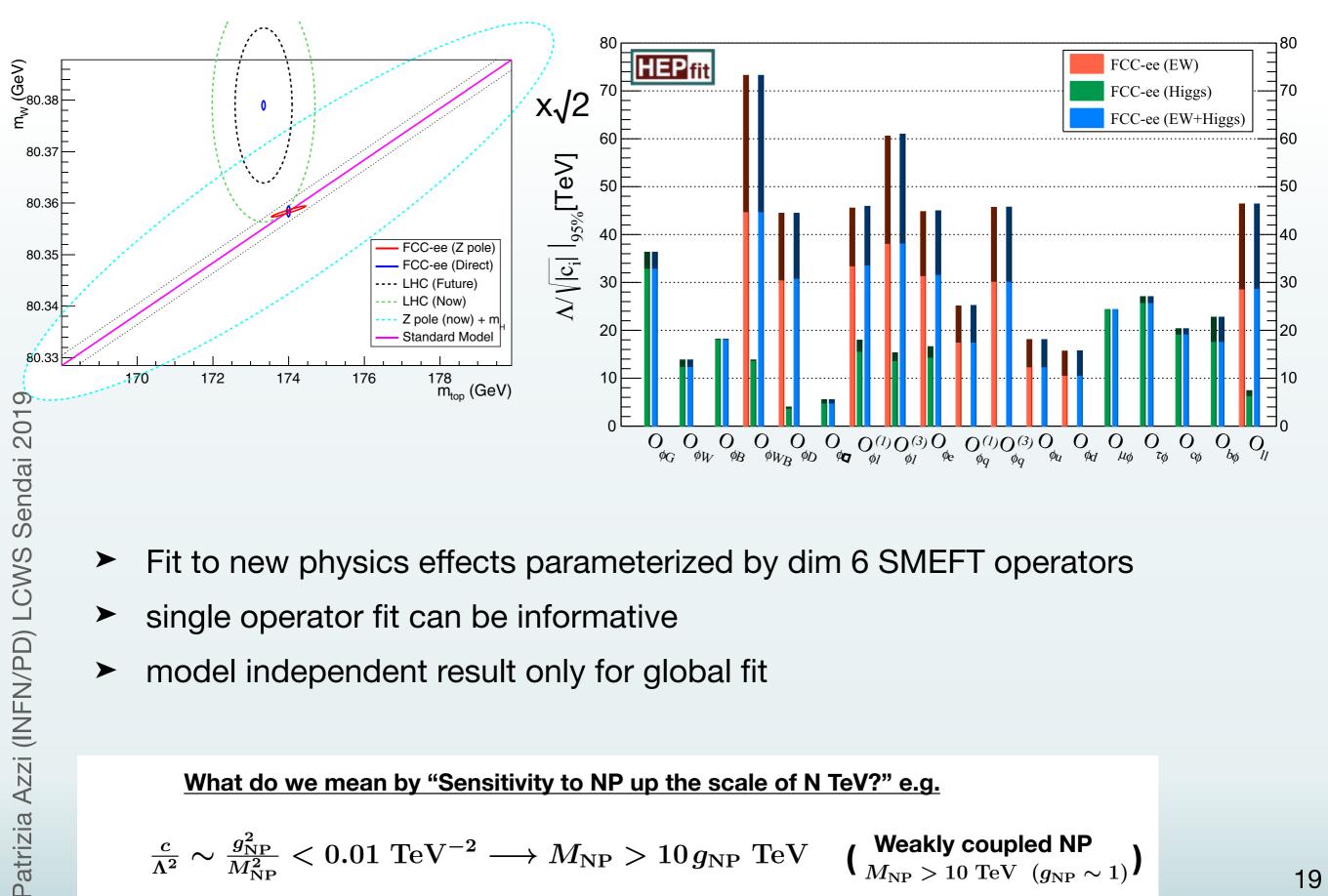

- Complementarity between experiments depending on the parameter space
- Also comparison with HL-LHC





BSM DIRECT SEARCHES - STERILE NEUTRINO LL

- Long Lived Particles: recent study with a SiD inspired detector and 110ab-1 at Z pole 1710.03744
- Rations of θα measureable with high accuracy
- ➤ Test minimal type I seesaw hypotesis
- ➤ Together with ΔM also tests the compatibility with leptogenesis



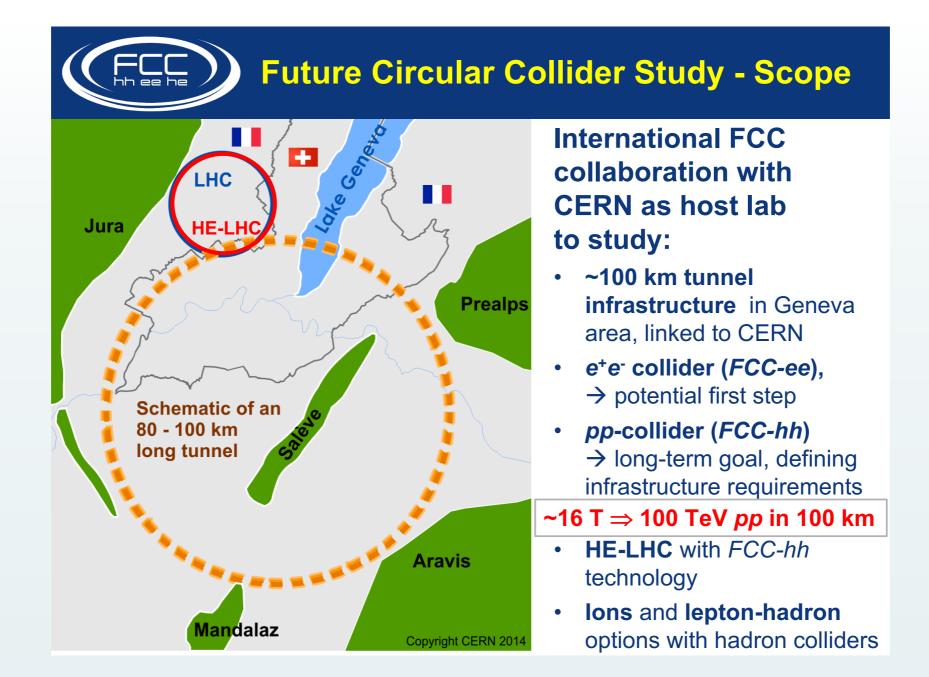
$$L \sim \frac{3 \ [cm]}{|U|^2 . \ (m_N [GeV])^6}$$

L~1m for m_N =50GeV and $|U|^2$ =10⁻¹²

SUMMARY ON NEW PHYSICS SENSITIVITIES

- Fit to new physics effects parameterized by dim 6 SMEFT operators \succ
- single operator fit can be informative \blacktriangleright
- model independent result only for global fit \succ

What do we mean by "Sensitivity to NP up the scale of N TeV?" e.g.


$$rac{c}{\Lambda^2} \sim rac{1}{2}$$

SUMMARY

- There must be something beyond the Standard Theory (or totally different!)
- Experimental proofs: Cosmological Dark Matter, Baryon Asymmetry of the Universe, non-zero neutrino masses
- Which way to go?
 - Direct observation of new particles
 - New phenomena
 - Deviations from precise predictions
- Physics absolutely needs an e+e- factory that covers the whole range: Z, W, H and top at the highest luminosities
- ► FCC-ee is the best first step to pave the way for FCC-hh:
 - preview of new physics to be searched for
 - brings a significant reduction of systematics measurements
 - handles to understand underlying theory in case of discovery

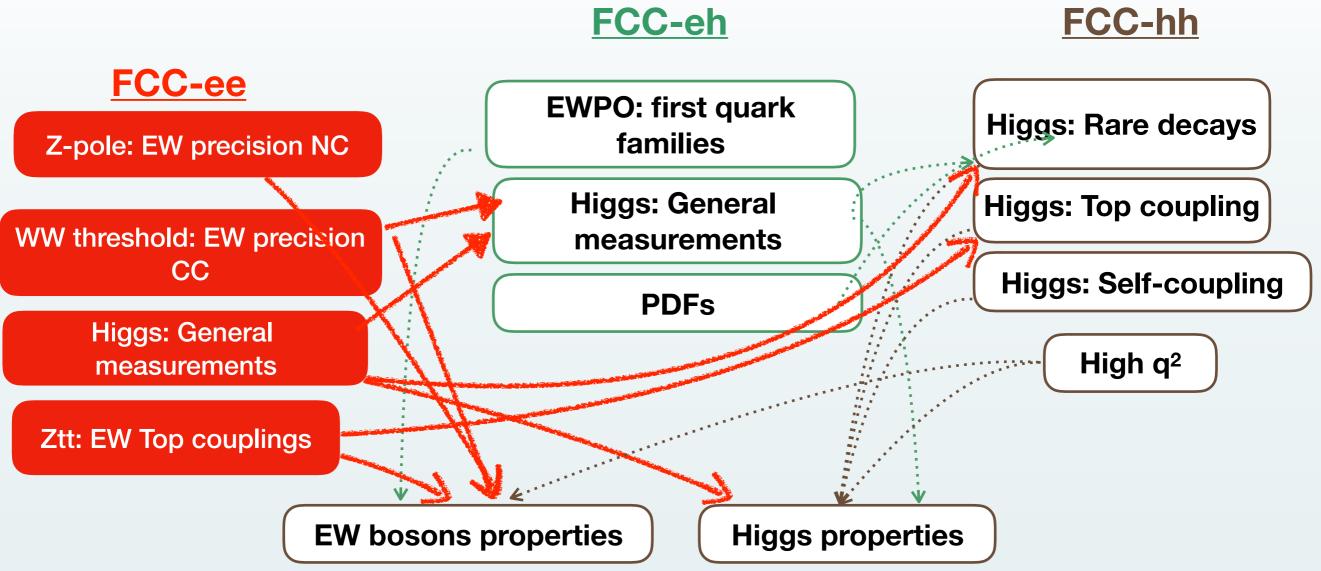
NEXT STEPS

FCC-ee is the first step of the integrated FCC project.

Plan for the next 5 years: write TDRs for the machine and possibly Lol/CDR for the 2(4?) detectors

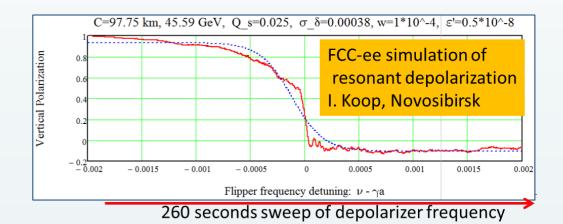
0

FUTURE CIRCULAR COLLIDER STUDY


BACKUP

hh ee he

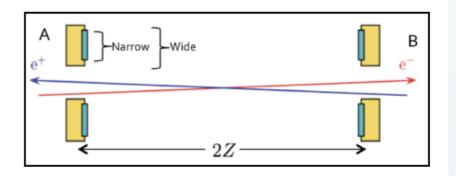
COMPLEMENTARITIES IN FCC PROGRAM


• All three FCC options complement each other very well and are useful to complete the whole picture:

BEAM POLARIZATION AND ENERGY CALIBRATION

Requirement from physics

- Center-of-mass energy determination with precision of ±100keV around the Z peak
- Center-of-mass energy determination with precision of ±300keV at W pair threshold
- > For Z peak cross-section and width energy spread uncertainty: $\Delta\sigma/\sigma=0.2\%$
- Use resonant depolarization as main measurement method
- use pilot bunches to calibrate parasitically during physics data taking
- take data at points where self-polarization is expected: easy to accomodate for Z and W
- ► Lots of details in <u>ArXiv:1909.12245v1 A.Blondel et al.</u>
- ptp energy uncertainty <40KeV and validation of overall centre-of-mass uncertainty of 100KeV


	statistics	$\Delta \sqrt{s}_{\rm abs}$	$\Delta \sqrt{s}_{\rm syst-ptp}$	calib. stats.	$\sigma_{\sqrt{s}}$
Observable		$100 \mathrm{keV}$	$40\mathrm{keV}$	$\left 200\mathrm{keV}/\sqrt{N^{i}} ight $	$\left 85\pm0.05\mathrm{MeV} ight $
$m_{Z} (keV)$	4	100	28	1	—
$\Gamma_{\rm Z} \ ({\rm keV})$	4	2.5	22	1	10
$\sin^2 \theta_{\rm W}^{\rm eff} \times 10^6 \text{ from } A_{\rm FB}^{\mu\mu}$	2	_	2.4	0.1	_
$\frac{\Delta \alpha_{\rm QED}({\rm m}_{\rm Z}^2)}{\alpha_{\rm QED}({\rm m}_{\rm Z}^2)} \times 10^5$	3	0.1	0.9	_	0.1

ArXiv:1909.12245v1 A.Blondel et al.

MEASUREMENT OF LUMINOSITY, σ_{had} , NEUTRINO FAMILIES

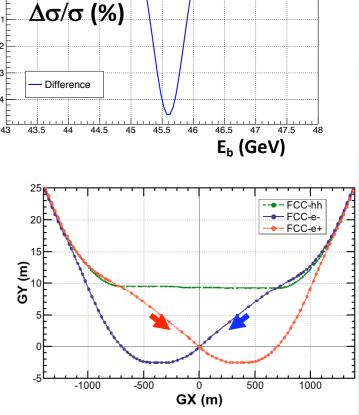
- Realistic goal on theoretical uncertainty from higher order for low angle Bhabha is 0.01% (*), corresponding to a reduction of a factor 8 in uncertainty on number of light neutrino families, N_v (we are already at mid road ≈ 0.04%)
 - Another goal is a point to point relative normalization of 5 10 $^{\text{-5}}$ for Γ_{Z}
- To match this goal an accuracy on detector construction and boundaries of \approx 2 μm is required
 - clever acceptance algorithms, a la LEP, with independence on beam spot position should be extended to beam with crossing angle

- Can potentially reach an uncertainty of 0.01% also with e+e-→γγ, statistically 1.4 ab⁻¹ are required (theory uncertainty already at this level, requires control of large angle Bhabha)
- Measurement of N_v with similar precision provided by Z γ , Z $\rightarrow vv$ events (above the Z)
- Electromagnetic effects caused by the bunch density can affect the acceptance of the luminometers in a non-trivial way. This can provoke a bias one order of magnitude bigger than the desired precision. New study of beam-beam effects in ArXiv:1908.01698

GIGA-Z VS TERA-Z

Table 5: Comparisons between the ILC GigaZ and FCC-ee TeraZ for the measurements of left-right coupling asymmetries, tests of lepton universality, and measurements of the effective weak mixing angle at the Z pole. Also indicated is the limiting precision on the effective mixing angle from the precision on $\alpha_{\text{QED}}(m_Z^2)$ taking into account for FCC-ee of the improvement on this quantity from the off-peak measurement of the muon forward-backward asymmetry [63].

Facility	ILC-GigaZ	FCC-ee
Z produced at the peak	10^{9}	4×10^{12}
Longitudinal polarization (P_{e^-}, P_{e^-})	$(\pm 0.8, 0.0)$	(0.0, 0.0)
$\Delta A_{\rm e}$	1.2×10^{-4}	1.5×10^{-5}
ΔA_{μ}	3×10^{-4}	5×10^{-5}
ΔA_{τ}	3×10^{-4}	5×10^{-5}
$\Delta \frac{A_{\mu}}{A_{e}}$	$1.6 imes 10^{-3}$	2.5 to 4×10^{-4}
$ \begin{array}{c c} \Delta \frac{\mathcal{A}_{\mu}}{\mathcal{A}_{e}} \\ \Delta \frac{\mathcal{A}_{\mu}}{\mathcal{A}_{\tau}} \\ \hline \Delta \sin^{2} \theta_{W}^{\text{eff}} \end{array} $	$2.3 imes 10^{-3}$	3.3×10^{-4}
$\Delta \sin^2 \theta_{\rm W}^{\rm eff}$	1.5×10^{-5}	6×10^{-6}
Hard limit on SM prediction:		
$\Delta \sin^2 \theta_{\rm W}^{\rm eff}$ from $\alpha_{\rm QED}(m_{\rm Z}^2)$	1.1×10^{-5}	7×10^{-6}


Polarization does compensate for the different statistic but not completely. Factor 5-10 better for FCC-ee measurement of L-R coupling asymmetries.

$\Gamma_{\rm Z} \, {\rm and} \, {\rm beam} \, {\rm energy} \, {\rm spread}$

• The beam energy spread affects the lineshape changing the cross section by

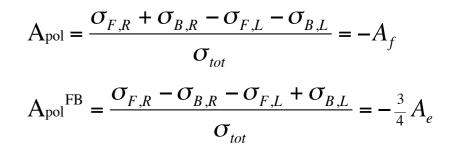
$$\delta\sigma\simeq 0.5\frac{d^2\sigma}{dE^2}\epsilon_{CMS}^2$$

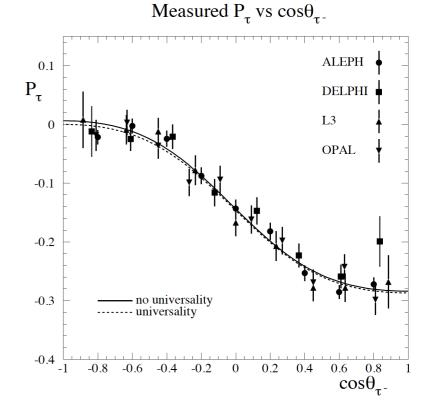
- The size of the energy spread (≈ 60 MeV) and its impact on Γ_z (≈4 MeV) is similar to LEP, but the approach to tackle the corresponding systematic uncertainty different because of FCC-ee beam crossing angle
- At LEP it was controlled at 1% level by measuring the longitudinal size of the beam spot, at FCC-ee can be measured with similar precision from the scattering angles of $\mu^+\mu^-$ events

- Using 10⁶ dimuon events (4 min @FCC-ee) can measure the energy spread at 0.1% of its value
 - Detector requirement on muon angular resolution of 0.1mrad

 \succ

tau polarization plays a central role at FCC-ee


• Separate measurements of A_e and A_{τ} from


 $P_{\tau}(\cos\theta) = \frac{A_{pol}(1+\cos^2\theta) + \frac{8}{3}A_{pol}^{FB}\cos\theta}{(1+\cos^2\theta) + \frac{8}{3}A_{FB}\cos\theta}$

At FCC-ee

- very high statistics: improved knowledge of tau parameters (e.g. branching fraction, tau decay modeling) with FCC-ee data
- use best decay channels (e.g. τ→ ρν_τ decay very clean), note that detector performance for photons / π⁰ very relevant

\rightarrow measure sin² θ_{eff} with 6.6 10⁻⁶ precision

Precisions on coupling ratio factors, A_f

1 -	$2g_{Ve}g_{Ae}$	_	$2g_{Ve}/g_{Ae}$
\mathcal{A}_e –	$\overline{(g_{Ve})^2 + (g_{Ae})^2}$	_	$\overline{1 + (g_{Ve}/g_{Ae})^2}$

	Statistical uncertainty	Systematic uncertainty	improvement w.r.t. LEP
\mathcal{A}_e	$5. \times 10^{-5}$	$1. imes 10^{-4}$	50
\mathcal{A}_{μ}	2.5×10^{-5}	$1.5 imes 10^{-4}$	30
$egin{array}{llllllllllllllllllllllllllllllllllll$	$4. \times 10^{-5}$	$3. imes 10^{-4}$	15
\mathcal{A}_b	$2 imes 10^{-4}$	$30 imes 10^{-4}$	5
\mathcal{A}_{c}	$3 imes 10^{-4}$	$80 imes 10^{-4}$	4
$\sin^2 \theta_{W,eff}$ (from muon FB)	10^{-7}	$5. \times 10^{-6}$	100
$\sin^2 \theta_{W,eff}$ (from tau pol)	10^{-7}	$6.6 imes 10^{-6}$	75

Relative precisions, but for $sin^2\theta_{eff}$

Relative precisions

Precisions on vector and axial neutral couplings

fermion type	g_a	g_v
e	$1.5 imes 10^{-4}$	$2.5 imes 10^{-4}$
μ	$2.5 imes 10^{-5}$	$2. \times 10^{-4}$
au	$0.5 imes 10^{-4}$	$3.5 imes 10^{-4}$
b	$1.5 imes 10^{-3}$	1×10^{-2}
с	$2 imes 10^{-3}$	1×10^{-2}

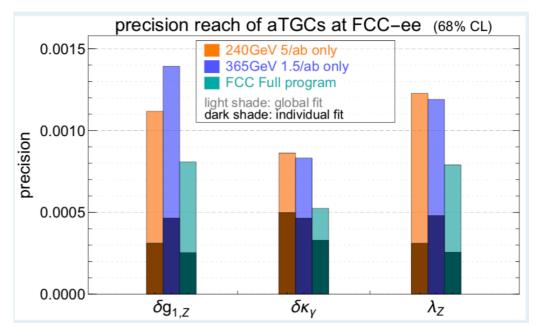
Improvements 1 - 2 orders of magnitudes with respect to LEP, depending on the fermion (Still need to explore the potential for a measurement of the s quark coupling)

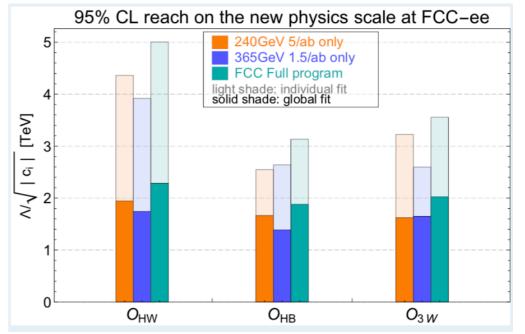
MORE FLAVOR PHYSICS

7) A (partial) selection of unique opportunities

- The search for the decay $B_s \rightarrow \tau^+ \tau^-$, as the next rare dileptonic decay. Produced number of events at FCC-ee: $O(2.10^5)$. Can be studied with a topological reconstruction of the kinematics of the decay.
- The search for the decay $B^0 \rightarrow \mu^+\mu^-$, expect O(100) clean events.
 - Incidentally, the CKM matrix element | Vub can be determined theory free (up to the assumption of SU(2)strong !) at 5% precision through:


$$\frac{\mathcal{B}(B^+ \to \mu^+ \nu)}{\mathcal{B}(B^+ \to \mu^+ \mu^-)} \propto \frac{f_{B^+}}{f_{B^0}} \frac{|V_{ub}|}{|V_{td}|}$$


- The leptonic decay $B_{\tau}^+ \to \tau^+ v_{\tau}$ is diagrammatically similar to the presently anomalous decay $B^0 \to D^{(*)} \tau^+ v_{\tau}$. Expect $O(10^6)$!
- CP violation in neutral B-mesons mixing is unobserved to date. The SM predictions are O(10⁻⁴) [O(10⁻⁵)]


9

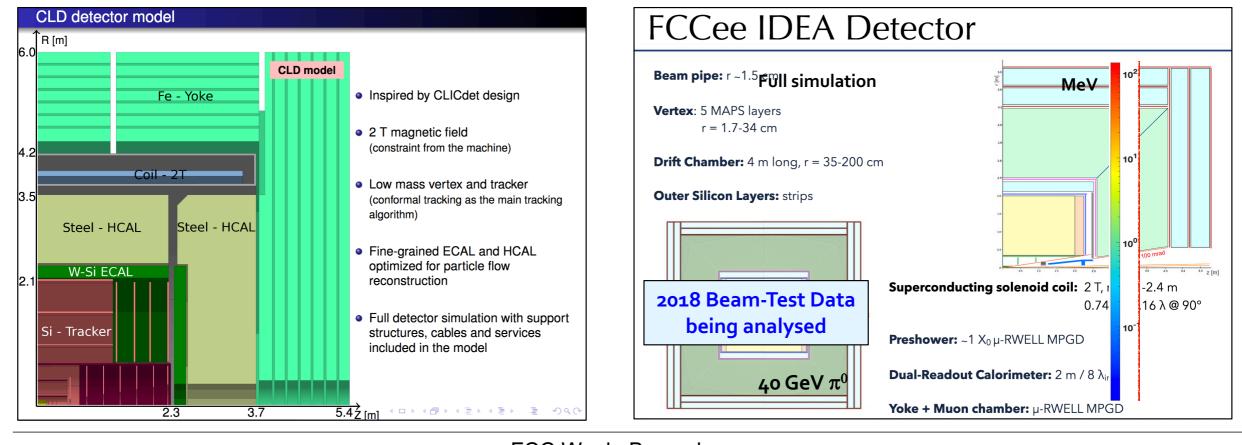
SENSITIVITY TO ATGCS

- Based on expected luminosity at 161, 240, 350 and 365 GeV
- Consider CP-even dimension 6 operators, SU(2)XU(1) symmetry leaves three independent anomalous couplings
- Include both total cross section and angles
- For the moment only statistical uncertainties
- One order of magnitude improvement with respect to LEP

Analysis performance

- **•** Full Sim, Fast Sim, Extrapolation
 - We have developed benchmark analyses with CMS full sim analyses (2012)
 - $H \rightarrow bb, \tau\tau, WW, ZZ, \gamma\gamma, \mu\mu, ...$
 - We have checked a few of them with CLICDet full sim (2013)
 - Improves over CMS precisions by 20% (for those channels accessible to CMS)
 - We have developed a fast simulation able to reproduce CMS and CLICDet performance
 - Validated on full simulation
 - We have checked that the fast simulation gives the same results as ILC/CLIC analyses
 - For a number of benchmark analyses
 - For the final FCC-ee numbers, we have conservatively assumed same detector performance as ILC and CLIC detectors in our fast simulation (CLD)
 - We expect better performance
 - Smaller beam pipe currently checking if 10 mm radius is feasible
 - Ten years to develop innovative detectors at up to 4 IPs
 - Better calibration, new analysis techniques, etc.
 - We have extrapolated statistical precision from ILC (250 GeV) and CLIC (380 GeV)
 - For those channels not fully analysed by the FCC-ee team
 - Note: $H \rightarrow Z\gamma$ final state not yet in the tables, but can be included as well.

Experimental uncertainties


- Many sources were examined, and solutions exist for all of them
 - Centre-of-mass energy can be calibrated to ~2-5 MeV with Zγ, WW, and ZZ events
 - From the knowledge of m_z and m_w to 0.1 and 0.5 MeV
 - Negligible impact on m_H and on Higgs branching fractions
 - Beam energy spread can be measured continuously (1% / \sqrt{day}) with $\mu^+\mu^-$ events
 - Negligible impact on recoil mass uncertainty and on σ_{HZ}
 - Alignment (absolute and relative) and calibration (calo, b-tag, PID, etc)
 - Can be performed with regular runs at the Z pole
 - Requires 12 hours for setup, e.g., every month
 - One hour data taking gives 3.10⁸ Z in Higgs mode, and 10⁷ Z in top mode
 - i.e., about 1000 times the monthly Higgs statistics
 - Fermion pairs at 240 and 365 GeV can also be used as a complement
 - Cross section 300 times the Higgs cross section (3.10⁸ events at 240 GeV)
 - Integrated luminosity can be measured fast with 0.01% precision
 - i.e., 10 times better than the ultimate precision expected from 2.5 10⁶ Higgs events
 - Magnetic field will not be uniform
 - Will be measured in the tracker volume before tracker installation
 - Will be followed with $\mu^+\mu^-$ events (Z pole) and with coil current measurements

Two detector concepts for the CDR

It was demonstrated that detectors satisfying requirements are feasible

O. Viazlo, L. Pezzotti

- Physics performance, beam backgrounds, invasive MDI, event rates, ...
 - With two rather complementary designs see talks of Oleksander and Lorenzo for details

Patrick Janot

FCC Week, Brussels 28 June 2019

30