The CLIC Physics Potential

Wolfgang Kilian

University of Siegen

- on behalf of CLICdp -

LCWS 2019 Sendai, October/November 2019

W. Kilian (CLICdp / Uni Siegen)

CLIC detector and physics (CLICdp)

- 30 institutions
- 18 countries
- Detector R&D and optimization
- Physics prospects and simulation studies

https://clicdp.web.cern.ch/

Physics at CLIC

$\mathsf{CLIC}~\mathsf{380} \Rightarrow 1~\mathsf{ab}^{-1}$

- Higgs decays and couplings
- Top-pair threshold
- Top-pair continuum

$\mathsf{CLIC}\ 1500 \Rightarrow 2.5\ \mathsf{ab}^{-1}$

- Exclusive top/electroweak interactions
- Higgs self-interaction

$\mathsf{CLIC}\ \mathsf{3000} \Rightarrow \mathsf{5}\ \mathsf{ab}^{-1}$

- Vector-boson scattering
- Exploiting the BSM discovery potential

Polarization: e^- (±80 %) / Lumi spectrum: via Bhabha scattering (arXiv:1812.01644)

CLIC Detector

(arXiv:1812.07337)

- Momentum resolution
 - $\Rightarrow \begin{array}{l} \mbox{Higgs coupling to muons, leptons from BSM, ...}\\ \sigma_{p_T}/p_T \sim 2 \times 10^{-5} \mbox{ GeV}^{-1} \mbox{ above 100 GeV} \end{array}$
- Jet energy resolution
 - ⇒ separation of W/Z/H di-jets $\sigma_E/E \sim 5 \% \dots 3.5\%$ for jets at 50 GeV … 1000 GeV
- Impact parameter resolution
 - $\Rightarrow \frac{b/c\text{-tagging, Higgs couplings, ...}}{\sigma_{r\varphi} \sim a \oplus b / (p[GeV] \sin^{3/2}\theta) \, \mu m}$ with $a = 5 \, \mu m, \ b = 15 \, \mu m$
- ► Lepton identification efficiency > 95%
- Angular coverage
 - ⇒ Vector-boson fusion, photon tagging Down to $\theta = 10 \text{ mrad}$ ($\eta = 5.3$)

Higgs Physics at 350 GeV: Recoil against hadronic Z

Higgs studies (EPJC 76 (2016) 72)

 $e^-e^+
ightarrow Z(
ightarrow jj) + X$ [1 ab⁻¹]

optimal sensitivity near 350/380 GeV:

\sqrt{s} [GeV]	σ [fb]	$\Delta \sigma$ [fb]	
250	136	2.6 %	
350	93	1.3 %	
420	68	1.9~%	

(combine with $Z \rightarrow \ell \ell$)

 \Rightarrow fit

 $\Rightarrow \mbox{ absolute normalization} \\ \mbox{ of all Higgs couplings} \end{cases}$

Higgs Physics at 350 GeV: Higgs-strahlung and WW fusion

ZH	Recoil mass distribution	m _H	78 MeV
ZH	$\sigma(ZH) imes BR(H o invisible)$	Γ _{inv}	0.4 %
ZH	$\sigma(ZH) imes BR(Z o \ell^+ \ell^-)$	g^2_{HZZ}	2.7 %
ΖH	$\sigma(\mathit{ZH}) imes BR(\mathit{Z} ightarrow qar{q})$	g _{HZZ}	1.3%
ΖH	$\sigma(\mathit{ZH}) imes BR(\mathit{H} ightarrow bar{b})$	$g_{HZZ}^2 g_{Hbb}^2 / \Gamma_H$	0.61%
ZH	$\sigma(ZH) imes BR(H \to c\bar{c})$	$g_{HZZ}^2 g_{Hcc}^2 / \Gamma_H$	10%
ΖH	$\sigma(ZH) imes BR(H o gg)$		4.3%
ZH	$\sigma(ZH) \times BR(H \rightarrow \tau^+ \tau^-)$	$g_{HZZ}^2 g_{H\tau\tau}^2 / \Gamma_H$	4.4 %
ZH	$\sigma(ZH) \times BR(H \to WW^*)$	$g_{HZZ}^2 g_{HWW}^2 / \Gamma_H$	3.6 %
$H \nu \bar{\nu}$	$\sigma(H u ar{ u}) imes BR(H o b ar{b})$	$g_{HWW}^2 g_{Hbb}^2 / \Gamma_H$	1.3 %
$H \nu \bar{\nu}$	$\sigma(H\nu\bar{\nu}) \times BR(H \to c\bar{c})$	$g_{HWW}^2 g_{Hcc}^2 / \Gamma_H$	18%
$H \nu \bar{\nu}$	$\sigma(H \nu \bar{\nu}) imes BR(H o gg)$	····· nee	7.2%

Model-independent fit: 1 ab^{-1} , no polarization (arXiv:1812.01644)

W. Kilian (CLICdp / Uni Siegen)

Top Physics at 350/380 GeV

Threshold scan (340...350 GeV): 10 steps, 100 fb⁻¹ total Continuum (380 GeV): top-coupling measurements

 \Rightarrow talk by Kacper Nowak

 $\Delta m_t({
m stat})pprox 20\dots 30 \; {
m MeV} \ \Delta m_t({
m syst})pprox 50 \; {
m MeV}$

CLIC Top physics: arXiv:1807.02441

Electroweak Physics at 380 GeV: Triboson production

220 240 260 280 300 360380

 \sqrt{s} [GeV]

Higgs Physics at 1500 and 3000 GeV: Self-coupling

- $HH \rightarrow b\bar{b}b\bar{b}$ and $b\bar{b} + 4j$
- ▶ *ZHH* at 1.4 TeV
- $HH\nu\bar{\nu}$ at 3 TeV
- Full simulation, BDT analysis

arXiv:1901.05897

W. Kilian (CLICdp / Uni Siegen)

CLIC Physics Potential

Fit only *g_{HHH}*:

Higgs Physics up to 3000 GeV: Resonances

Scalar singlet = resonance in $HH\bar{\nu}\nu$

W. Kilian (CLICdp / Uni Siegen)

Higgs Physics combined: Higgs Couplings

arXiv:1812.01644

Model-independent

- 11 parameters
- $\Delta\Gamma_H = 4.7 \% \longrightarrow 2.5 \%$
- Percent-level or better for all couplings

W. Kilian (CLICdp / Uni Siegen)

Electroweak Physics at 3000 GeV: The Rise of VBS

W. Kilian (CLICdp / Uni Siegen)

Top Physics at 3000 GeV

W. Kilian (CLICdp / Uni Siegen)

LCWS 2019 13 / 18

Top Physics combined

W. Kilian (CLICdp / Uni Siegen)

LCWS 2019 14 / 18

BSM Physics up to 3000 GeV: SMEFT (D=6) Coefficients

Process: diboson W^+W^- , angular analysis

 $C_{3W} \times 10^2$ $C_W \times 10^2$ -8 -6 -4 -2 8 -6 -4 -2 2 6 8 Hadronic, Inclusive Semileptonic, Inclusive Hadronic, Unpolarized Semileptonic, Unpolarized Semileptonic, Exclusive Hadronic, Exclusive Hadronic, Polarized Semileptonic, Polarized -3.1 3.3 -1.7 1.4 -1.8 1.8 0.8 -0.8 3000 GeV 3000 GeV x1 -x1 3.2 2.5 1.4 -3.2 -3.4 -1.5 -1.5 -1.8 2. 1.4 2.1 -0.5 0.4 0.3 -1.3 -0.3 x10 1400 GeV 1500 GeV x10 -1.9 -0.8 -1.2 1.2 -0.4 0.4 -0.6 0.8 -0.4 0.4 -0.3 0.3 0.2 380 GeV ×100 -0.2 380 GeV ×100 0.4 -0.4 0.4 -0.4 -0.2 0.2 -0.2 0.2 5 3 2 0 -1 -2 -3 -5 -1 -3 3 0 -4 -6 4 $\delta q_1^Z \times 10^4$ $\lambda_v \times 10^4$

(Note scaling factors)

W. Kilian (CLICdp / Uni Siegen)

(arXiv:1812.02093)

BSM Physics up to 3000 GeV: Discovery or Limits

Low background, full final-state coverage

- ⇒ pair-production limits determined by kinematics $(\sqrt{s}/2)$ and available luminosity (5 ab⁻¹)
- Example: stau pairs

 \blacktriangleright Example: Higgsino DM, χ^{\pm} slightly heavier than χ^0

W. Kilian (CLICdp / Uni Siegen)

BSM Physics up to 3000 GeV: Indirect Constraints

- SMEFT can be recast into limits on specific new-physics scenarios
- Straightforward: universal contact interactions

Read More:

- Higgs physics at the CLIC electron-positron linear collider (EPJC 76 (2016) 72, arXiv:1608.07538)
- Top-quark physics at the CLIC electron-positron linear collider (JHEP, arXiv:1807.02441)
- The CLIC Potential for New Physics (CERN Yellow Report, arXiv:1812.02093)
- The Compact Linear Collider (CLIC) 2018 Summary Report (CERN Yellow Report, arXiv:1812.06018)
- Detector technologies for CLIC (CERN Yellow Report, arXiv:1905.02520)
- The Compact Linear e+e- Collider (CLIC): Accelerator and Detector (ESG Submission, arXiv:1812.07987)
- The Compact Linear e+e- Collider (CLIC): Physics Potential (ESG Submission, arXiv:1812.07986)

W. Kilian (CLICdp / Uni Siegen)