# Production of a coherent bremsstrahlung photon beam with several tens of GeV at ILC

Norihito Muramatsu
ELPH, Tohoku University
LCWS @Sendai, 29 Oct 2019

#### **Contents**

Proposing the production of 70~80 GeV photon beam with linear polarization, as a diversified use of ILC.

- **➤** Motivation & Introduction
- > Feasibility & Beam properties at ILC
- > Considerations for experimental design
- Physics prospect & Summary

#### **Motivation**

Development of an unprecedented photon beam for hadron photoproduction using a fixed target.

- Unique feature of a photon beam
  - $\square$  It can couple with a  $q\bar{q}$  component in a hadron.
  - $\square$  Easily **polarized**.  $\Rightarrow$  Usable for spin-related studies.
- ➤ ILC energy can produce **heavy hadrons** including charm & bottom quarks.





## Past experiments

Brems. beam with Pb/W radiator in 1970s-1980s

- $\triangleright$  CERN SPS (25<E $_{\gamma}$ <70 GeV)
- $\triangleright$  Fermilab Tevatron (18<E $_{\gamma}$ <185 GeV)
- ⇒ Polarization did not attract much attention maybe because of a beam divergence problem.



## Coherent bremsstrahlung



Interference of  $\gamma$ -rays in a periodic nuclear EM field.

- Monochromatic & Linearly polarized.
- Now in practical use for hadron photoproduction experiments. (MAMI, ELSA, J-Lab, etc.)

# Why at ILC?

- The energy of  $e^{\pm}$  beam (125 GeV) is attractive. Coherent brems.  $\Rightarrow$   $E_{\gamma}$  range : 20-80% of  $E_{e}$
- ightharpoonup High  $e^{\pm}$  current results in high  $\gamma$  intensity.
- > High quality e<sup>±</sup> beam is available.
  - ✓ Characteristic cone angle
    - $\theta = 1/\gamma \sim 4 \mu rad > divergence \sim 1 \mu rad$
  - ✓ Multiple scattering @ radiator ( $t \le 50 \mu m$ ) is suppressed to be less than 4 µrad with the high energy  $e^{\pm}$  beam.

#### Photon beam properties

Collaboration with Dr. Ken Livingston (Univ. of Glasgow)

Peak energy setting by radiator angle

ex. 
$$E_{\gamma} = 0.6E_{e}$$
 (75 GeV)  $\Rightarrow P_{lin}^{max} \sim 70\%$ 

> A collimator reduces incoherent contribution.





#### Possible experimental areas at ILC

- ➤ Tune-up dump for main linac (125 GeV) : E-4 / E+4
- > 10% bunch steal is OK for the dump power (400 kW).
  - $\Rightarrow$  20 μA × 10% = 2 μA [enough beam intensity] cf. J-Lab (12 GeV) Hall-D :  $10^7 \gamma$ /sec with 200 nA



## Concept of experimental setup

- > Diamond radiator: t=20-50 μm with a Goniometer.
- ightharpoonup Tagger: Fine-segmented detector for recoil electrons. Event-by-event measurement of  $\mathbf{E}_{\mathbf{v}}$ .
- > Spectrometer w/ a fixed target like CERN COMPASS exp.



## **Physics prospect**

- Many exotic hadrons in charm & bottom sectors.
  Complementary to Bell-II, J-PARC, LHC-B, ...
- ➤ Photoproduction cross sections & spin observables would be sensitive to hadron structures.

| reaction                                            | E <sub>γ</sub> thr. |                                                                  | Parity filter in t-channel |
|-----------------------------------------------------|---------------------|------------------------------------------------------------------|----------------------------|
| $\gamma p \rightarrow J/\psi p$                     | 8.21 GeV            | <b>JLab</b>                                                      |                            |
| $\gamma p \rightarrow \overline{D}{}^0 \Lambda_c^+$ | 8.71 GeV            | GlueX                                                            | F Λ γ Κ* Λ Κ               |
| $\gamma p \rightarrow \overline{D}^0 \Sigma_c^+$    | 9.47 GeV            | <del>_</del>                                                     | $\pi$                      |
| $\gamma p \rightarrow X(3872) p$                    | 11.9 GeV            | New! unatural parity ex. P= -(-1) <sup>J</sup> pseudo-scalar: ka | unatural parity ex.        |
| $\gamma p \rightarrow Z^+(4430) n$                  | 14.9 GeV            |                                                                  |                            |
| $\gamma p \rightarrow Y$ (1S) p                     | 57.2 GeV            |                                                                  | P= -(-1) <sup>J</sup>      |
| $\gamma {\rm p} \to {\rm B}^+  \Lambda_{\rm b}$     | 62.8 GeV            |                                                                  | pseddo-scalar. Raoiis      |

## **Physics prospect**

- Many exotic hadrons in charm & bottom sectors.
  Complementary to Bell-II, J-PARC, LHC-B, ...
- Photoproduction cross sections & spin observables would be sensitive to hadron structures.



## **Summary**

- ➤ Proposing a facility to produce a coherent bremsstrahlung photon beam at a beam dump (E±4).
- An unprecedented photon beam with  $E_{\gamma} \sim 75$  GeV &  $P_{lin}^{max} \sim 70\%$  can be obtained at ILC.
- ➤ Heavy exotic hadrons including charm or bottom quarks can be explored with the extremely high energy & linearly polarized photon beam.