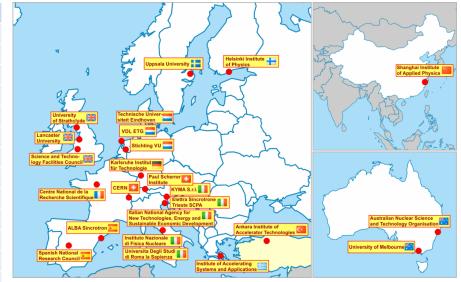


CompactLight, a X-band based **FEL facility**

Gerardo D'Auria, Elettra – Sincrotrone Trieste, on behalf of the CompactLight Collaboration (XLS)



The CompactLight Collaboration

CompactLight (XLS) is an initiative among several International Laboratories aimed at promoting the construction of the next generation FEL based photon sources with innovative accelerator technologies

	Organisation Name	Country
1	Elettra – Sincrotrone Trieste S.C.p.A.	Italy
2	CERN - European Organization for Nuclear Research	Intern.
3	Science and Tech. Facility Council – Daresbury Lab.	UK
4	Shanghai Institute of Applied Physics	China
5	Institute of Accelerating Systems and Applications	Greece
6	Uppsala Universitet	Sweden
7	Melbourne University	Australia
8	Australian Nuclear Science and Tecnology Org.	Australia
9	Ankara Univ. Institute of Accel. Techn.	Turkey
10	Lancaster Univ.	UK
11	VDL Enabling Technology Group Eindhoven	NL
12	Technische Universiteit Eindhoven	NL
13	Istituto Nazionale di Fisica Nucleare	Italy
14	Kyma S.r.l.	Italy
15	Rome Univ. "La Sapienza"	Italy
16	ENEA	Italy
17	ALBA Lab. de Luz Sincrotron	Spain
18	CNRS Centre Nat. de la Rech. Scient.	France
19	Karlsruher Instritut für Technologie	Germany
20	Paul Scherrer Institute	CH
21	CSIC Valencia Univ.	Spain
22	Helsinki Univ. Institute of Physics	Finland
23	ARCLN Amsterdam	NL
24	Strathclyde Univ.	UK

http://CompactLight.eu

- CompactLight is an EU Design Study (RIA)
- Starting date 01-01-2018
- Duration 36 months
- Total cost of the project 3.5 M€
- EU contribution: 3 M€
- 24 participating organisations within 13 countries including CERN + 5 associated partners.
- 7 Work Packages

XLS Objectives

Based on FEL Scientific Requirements, collected from the Scientific Community, we plan to design a Hard X-ray facility using the very latest concepts for:

- > High brightness electron photoinjectors
- Very high gradient accelerating structures (X-band)
- Novel short period undulators

FEL Parameters

Preliminary FEL Parameters based on user's requirements

Parameter	Unit	Soft x-ray FEL	Hard x-ray FEL	
Photon energy	KeV	0.25 - 2.0	2.0 - 16.0	
Wavelength	nm	5.0 - 0.6	0.6 - 0.08	
Repetition rate	Hz	100 to 1000*	100	
Pulse duration	fs	0.1 - 50		
Pulse energy	mJ	< 0.3		
Polarization		Variable - Selectable		
Two-pulse delay	fs	± 100		
Two-colour separation	%	20	10	
Synchronization	fs	< 10		

^{*}A repetition rate of 1000 Hz would be a unique and desirable feature of our design! We recognise that this is a very challenging target that we may have to reduce during the study.

Accelerating gradients

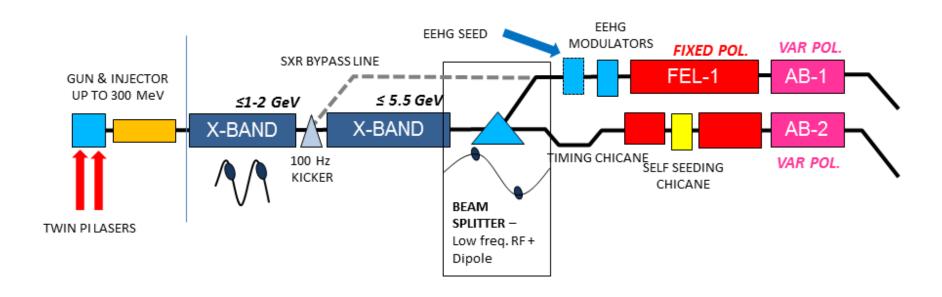
European XFEL (Germany)	24 MV/m	Superconducting L-band
Swiss FEL (Switzerland)	28 MV/m	Normal-conducting C-band
SACLA (Japan)	35 MV/m	Normal-conducting C-band

Examples of Linac gradients for most recent X-ray FELs

Parameter	Value
Length L	0.75m
Phase advance per cell φ	120°
First iris aperture a1/λ	0.15
Last iris aperture a2/λ	0.1
First iris thickness d1	0.9mm
Last iris thickness d2	1.7mm
Fill time τ	150ns
Operational gradient G	65MV/m
Input power Pin	41.8MW

Preliminary parameters of an optimized RF structure (X-band)

Preliminary parameters of the X-band RF unit, compared with the C-band SwissFEL technology.

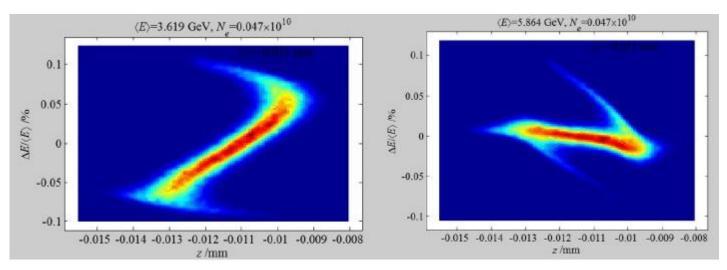

	unit	XLS X-band	SwissFEL C-band
Structures per RF unit		10	4
Klystrons per RF unit		2	1
Structure length	m	0.75	1.98
Allowed gradient	MV/m	80+	
Operating gradient	MV/m	65	27.5
Energy gain per RF unit	MV	488	203
Klystron nominal power	MW	50	50
Power in operation	MW	45	40
Klystron pulse length	μs	1.5	3
RF energy/pulse/GeV	J	277	591

Facility layout & operating modes

Operating modes:

- 1.FEL-1/FEL-2 independent double pulses to one experiment HXR 100Hz
- 2.FEL-1/FEL-2 independent single pulses to two experiments HXR 100Hz
- 3.FEL-1/FEL-2 independent double pulses to one experiment SXR 1kHz
- 4.FEL-1/FEL-2 independent single pulses to two experiments SXR 1kHz
- 5.FEL-1 SASE/SEEDED SXR 100Hz + FEL-2 SASE/SELF SEEDED HXR 100Hz

 $\ensuremath{\mathsf{D}}.$ Dunning , $\ensuremath{\mathsf{N}}.$ Thompson

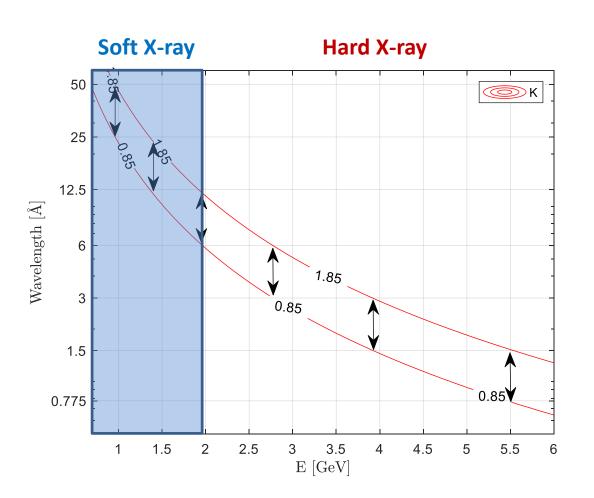


Beam parameters

Parameter	Value	
Max energy	5.5 GeV @100 Hz	
Peak current	5 kA	
Normalised emittance 0.2 mm.mrad		
Bunch charge	< 100 pC	
RMS slice energy spread 10 ⁻⁴		
Max photon energy	16 keV	
FEL tuning range at fixed energy	×2	
Peak spectral brightness @16 keV	10 ³³ ph/s/mm ² /mrad ² /0.1%bw	

Main Electron Beam Parameters

Longitudinal phase space from 1-D tracking at the exit of the linac for SXR FEL (left) and at the exit of the linac for HXR FEL (right)



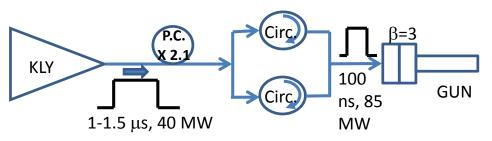
Undulator parameters

Both undulator lines have identical parameters, so K is tuneable to provide a factor of 2 wavelength tuning for both Soft X-ray and Hard X-ray

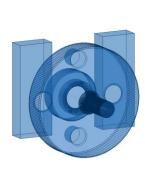
λ_u≈13mm K_{..}≈0.85-1.85

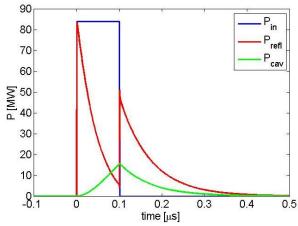
- Soft X-ray
 E_{beam}≈1.0/1.4/1.95GeV
 (~3 discrete working points
 @increased rep.rate, TBC)
- ➤ Hard X-ray
 E_{beam}≈2.75/3.9/5.5GeV
 (~3 discrete working points
 @100Hz)

D. Dunning



Ultra-fast GUN Design

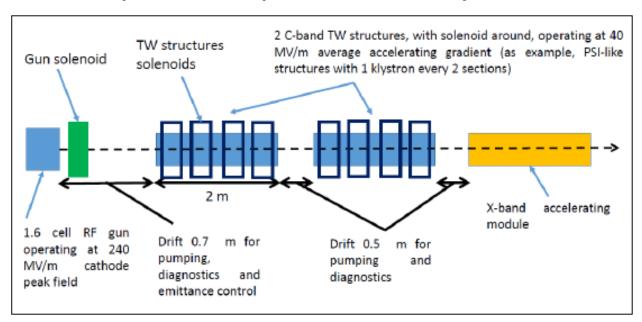



- ⇒ High gradient C-band gun (1.6 cells) operating at 240 MV/m cathode peak field
- ⇒ RF pulses <150 ns, keeping under control all quantities that drive breakdown phenomena (modified Poynting vector, surface electric field, etc.)
- ⇒ Design based on commercially available components (klystrons, circulators, pulse compressors, ect.)
- ⇒ Exploring different solutions for an optimized 2D profile of cells and input coupler (An input coupler working on the TM020 mode on the full cell seems to be the best solution).

Main parameters of the C-band gun (preliminary)

Parameters	Value
Resonant frequency [GHz]	5.712
$E_{cath}/\sqrt{P_{diss}}$ [MV/(mMW ^{0.5})]	65 (55)
RF input power [MW]	40 (70)
Cathode peak field [MV/m]	120
Repetition rate [Hz]	100
Quality factor	11000 (14000)
Filling time [ns]	150
Coupling coefficient	3
RF pulse length [ns]	180
Mode separation $0 - \pi$ [MHz]	
Pulsed heating [°C]	<40
Average did. Power[W]	200
·	· · · · · · · · · · · · · · · · · · ·

M. Croia



Injector

Parameters	Units	After VB and / or BC1
Charge (Q)	рC	75
Beam energy	MeV	300
rms bunch length (σ_i)	fs	350
Peak current $(Q/\sqrt{12}\sigma_t)$	Α	60
rms Energy spread	%	0.5
Projected rms norm. emittance	μm	0.2
Repetition rate	Hz	100-1000

Expected bunch parameters at the injector exit

Schematic layout of the C-band injector

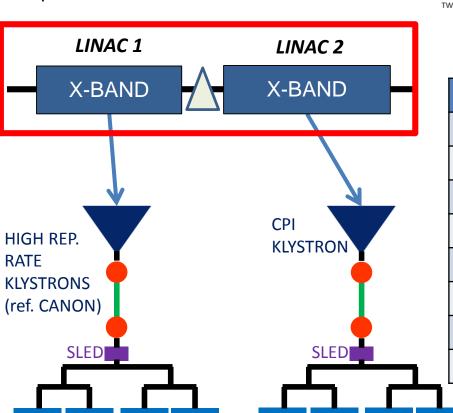
D. Alesini

Accelerating structure

RF system parameter and layouts done for 100 Hz baseline, 100/250 Hz dual mode and 100/1000 Hz dual klystron

		Rep. rate [112]		
	100	250	1000	
Average gradient <g> [MV/m]</g>	65	32	30.4	
Max klystron available out. power [MW]	50	50	10	
Req. klystron power per module [MW]	39	42.5	8.5	
RF pulse length [μs]	1.5	0.15	1.5	
SLED	ON	OFF	ON	
Av. diss. power per structure [kW]	1	0.31	2.2	
Peak input power per structure [MW]	68	10.6	14.8	
Av. Input power per structure [MW]	44	10.6	9.6	
Module energy gain [MeV]	234	115	109	

Frequency [GHz]	11.9942 2π/3
	$2\pi/3$
Phase advance per cell [rad]	, -
Shunt impedance R [MΩ/m]	90-131
Effective shunt Imp. R_s [M Ω /m]	387
Group velocity v _g [%]	4.7-1.0
P _{out} /P _{in}	0.215
Filling time [ns]	144
Number of cells per structure	108
Unloaded SLED Q-factor Q ₀	180000
External SLED Q-factor Q _E	23000
# structures per module N _m	4
Module active length L _{mod} [m]	3.6
Average iris radius <a>	3.5
Iris radius input-output [mm]	4.3-2.7
Structure length L _s [m]	0.9



Operating modes: dual linac

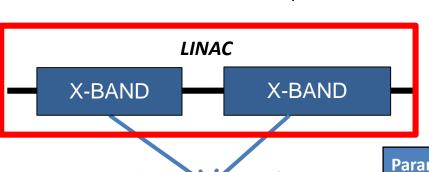
- two distinct linacs with different rf sources
- SXR@ 1 kHz
- HXR@ 100 Hz
- SXR@ 900 Hz and HXR@ 100 Hz running in parallel

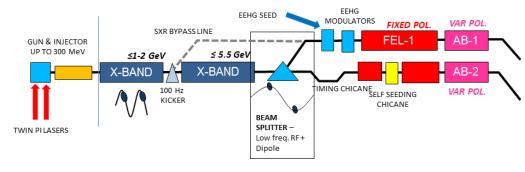
SXR BYPASS LINE SXR BYPASS LINE SXR BYPASS LINE S1-2 GeV S1-2 GeV X-BAND 100 Hz KICKER TWIN PILASERS	FEL-1 AB-1 AB-2 WAR POL. AB-1 AB-2 WAR POL. AB-1 AB-2 WAR POL. AB-1 AB-2 WAR POL. CHICANE BEAM SPUTTER – Low freq. RF+ Dipole
---	--

Parameter	LINAC 1	LINAC 2	TOTAL
Number of structures	68	60	128
Number of modules	17	15	32
Number of klystrons	17 (HRR)	15 (CPI)	32
Linac active length [m]	61	54	137
<e<sub>acc> per struct. [MV/m]</e<sub>	30.4	65	-
Rep. rate [Hz]	1000	100	-
Energy gain per module [MeV]	109	234	-
Max. Energy gain [MeV]	1853	3510	5363

 $\langle E_{acc} \rangle = 30.4 \text{ MV/m} @ 1 \text{ kHz} \langle E_{acc} \rangle = 65 \text{ MV/m} @ 100 \text{ Hz}$

D. Alesini




Operating modes: dual sources

Istituto Nazionale di Fisica Nucleare

- Single linac with two sources
- SXR@ 1 kHz
- HXR@ 100 Hz
- SXR and HXR CANNOT run in parallel

HIGH REP. RATE KLYSTRONS (ref. CANON)	CLED		CPI KLYSTRON
	SLED	7	1_
		MV/m (
<e<sub>acc></e<sub>	= 65 1	/IV/m @	100 Hz

Parameter	LINAC	
Number of structures	92	
Number of modules	23	
Number of klystrons	23 (HRR) + 23 (CPI)	
Linac active length [m]	83	
<e<sub>acc> per struct. [MV/m]</e<sub>	30.4 (@1 kHz), 65 (@ 100 Hz)	
Rep. rate [Hz]	100-1000	
Energy gain per module [MeV]	109 (@1 kHz), 234 (@ 100 Hz)	
Max. Energy gain [MeV]	2507 (@1 kHz), 5382 (@ 100 Hz)	

D. Alesini

Towards higher rep rate operation

Different scenarios under investigations:

1st scenario (1 klystron x LINAC Module): RF pulse shortening

50 MW, 1.5
$$\mu$$
s, 100 Hz $<$ E_{acc} $>$ = 65 MV/m

50 MW, 140 ns, 220 Hz
$$\langle E_{acc} \rangle = 30 \text{ MV/m}$$

- Linac energy downgraded to ≈ 45% of the max value @ 220 Hz rep rate;
- Not flexible: as soon as the SLED is removed the gradient is reduced by a factor ≈2.2;
- ullet Max rep rate very much dependent on modulator dead time au_{trans}

2nd scenario (1 klystron x LINAC Module): klystron peak power reduced

50 MW, 1.5 μs, 100 Hz

1.5 μs, 10 MW, 200 Hz 1.5 μs, 5 MW, 250 Hz

 $\langle E_{acc} \rangle = 29 \text{ MV/m} @ 200 \text{ Hz}$ $\langle E_{acc} \rangle = 20.5 \text{ MV/m} @ 250 \text{ Hz}$

- Linac energy downgraded to ≈ 30% of the max value @ 250 Hz rep rate;
- Flexible: different compromises between rep rate and RF peak power explorable;
- Klystron operated in a wide range of working points (realistic?)

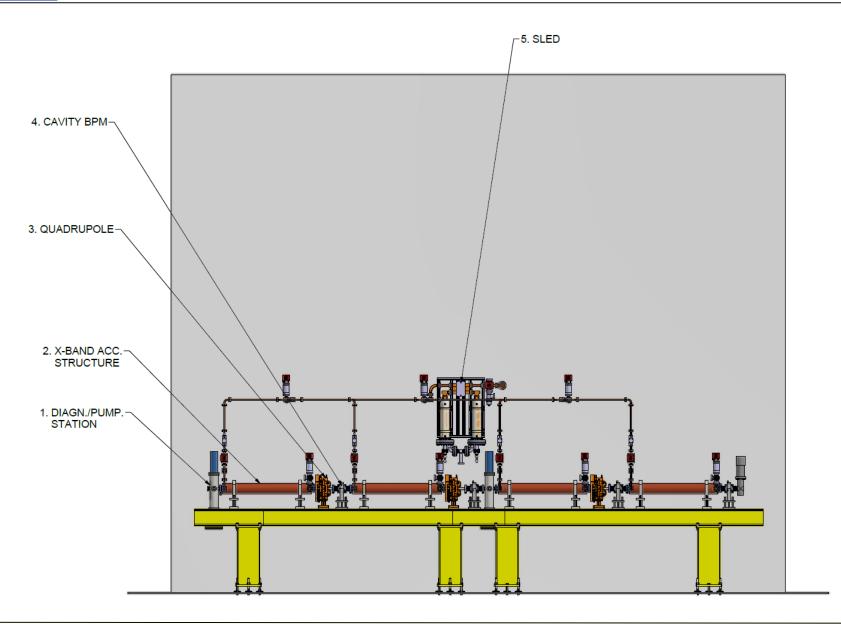
3rd scenario (2 klystrons x LINAC Module): - high rep rate/reduced peak power klystrons - low rep rate/HP klystron

CANON E37113 klystron, 6 MW 1.5 μ s, 1 KHz + CPI VKX 8311A

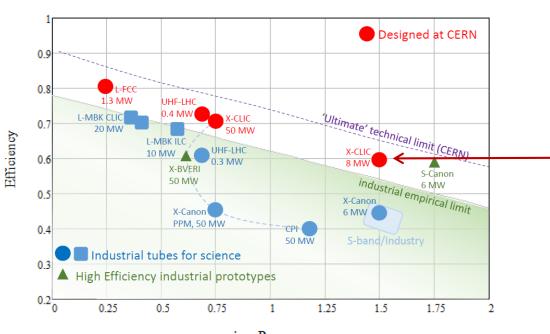
 $\langle E_{acc} \rangle = 65 \text{ MV/m @ } 100 \text{ Hz}$ $\langle E_{acc} \rangle = 23 \text{ MV/m @ } 1 \text{ kHz}$

•?????

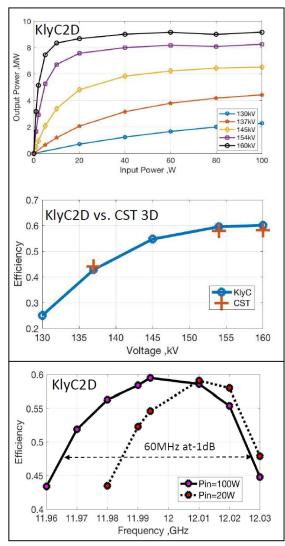
More detailed studies ongoing

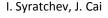

A. Gallo

RF module



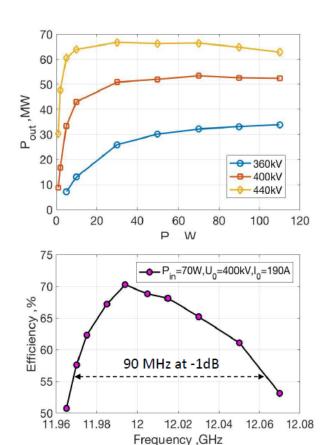
High efficiency klystrons


Klystron efficiency/perveance map

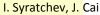

8-9 MW X-band klystron from industry

micro Perveance

- The HE retrofit design shall provide up to 10 MW (170 kV) peak RF power.
- The existing gun is re-used, thus in DC mode the limits on avarage power will be similar. With 2.5 μsec pulses (typical in Xbox3 with pulse compressor), the rep rate could be doubled (800 Hz) with out any modifications.
- With intellegent operation (rep. rate shall be reduce when switching from RF to DC mode), the 1.5 kHz will accesible without modifications on of the klystron design.
- Special care shall be given to the window design that shall to be adopted to the high avarage power.



High efficiency klystrons


The 50 MW HEX klystron progress summary

Parameter	Target value	KlyC/2D
Frequency, GHz	11.994	11.994
Voltage, kV	400	400
Current, A	190	190
Perveance, μAV ^{-3/2}	0.75	0.75
Efficiency, %	~70	70.2
Power, MW	53	53.4
Surface E field, MV/m	≤ 100	<100
Pulse length, ns	2000	2000
Power gain, dB	> 55	58.8
Cathode loading, A/cm ²	< 5	4.74

The final design is communicated to industry (CPI) for the final evaluation.

The HE design has lower (almost a factor 2) beam power for the same peak RF output power. The rep. Rate can be double (200Hz) in straightforward way without any modifications of collector and/or cooling system

Thank you!

CompactLight@elettra.eu www.CompactLight.eu Helsinki Institute of Physics of Applied Physics Recherche Scientifig New Technologies, Energy and Australian Nuclear Science and Technology Organisation University of Melbourne

CompactLight is funded by the European Union's Horizon2020 Research and Innovation program under Grant Agreement No. 777431.

