

CALICE/ILD SiW-ECAL an adaptative design

M. Anduze, <u>V. Boudry</u>, J.C. Brient, O. Korostyshevskiy,

R. Guillaumat, M. Louzir, F. Magniette, J. Nanni, H. Videau

Institut Polytechnique de Paris

LCWS 2019 Sendai, 29/10/2019

TNA support + WP14

SiW-ECAL geometry

Approximated dimensions for the small model

- for exact dimensions : see ECal Technical Design Document by Henri Videau (LLR), Marc Anduze (LLR) and Denis Grondin (LPSC) available on https://llrbox.in2p3.fr/owncloud/index.php/s/eeVeAlyv8o27VRF
 - Small ILD with 26 layers \rightarrow §5 of TDD.
- Modular construction : modules of 5 towers of 13 alveoli
 - slabs double sided with embedded RO electronics \supset
 - Slab dimensions : 186mm × (1472mm 1081mm) (for R=1462mm, th=223.2mm)
 - 8⁺ 5⁺ square ASU of 186mm.
 - ASUs = 4 SI diodes from 6" wafers, 1024 chan of 5.5×5.5 mm², 16 SK2 chip of 64 chan.

SiW-ECAL Building blocks: SLAB's & ASU's

R&D for "mass production" and QA

- Quality tests & preparation of large production
- Modularity \rightarrow ASU & SLABs
- Choice of square wafers
 - (≠ from hex: SiD, CMS HGCAL)
- Numbers ($R_{ECAL} = 1,8 (1.5) \text{ m}, |Z_{Endcaps}|=2,4 \text{ m}$)
 - Barrel modules: 40 (as of today all identical)
 - Endcap Modules: 24 (3 types) 16 (2 types)
 - ASUs = ~75,000
 - Wafers ~ 300,000 (2500 m²)
 - VFE chips ~ 1,200,000
 - Channels: 77Mch
 - Slabs = 6000 (B) + 3600 (EC) = 9600
 - \neq lengths and endings

Tests of

ASU: 12⁺ years of R&D

Most complex element: electro-mechanical integration

- Distrib / Collect signals from VFE (ASICs), Analog & Digital with dyn. range ≥ 7500
- $-\,$ Mechanical placer & holder for Wafers \rightarrow precision
- Thickness constraints

3 versions working

- with $S/N_{Trig} \ge ~12$ (for $320\mu m$)

Vincent.Boudry@in2p3.fr

REM Milestone Date Object Details 1st ASIC proto 2007 SK1 on FEV4 36 ch. 5 SCA proto, lim @ 2000 mips 1st ASIC SK2 64ch. 15 SCA 2009 3000 mips COB FEV7 8 SK2 1st prototype of a 2010 PCB 1st working PCB 16 SK2 (1024 2011 FEV8 CIP (OGFP) ch) 4 SK2 readout 1st working ASU 2012 FEV8 best S/N ~ 14 in BT (256ch) (HG), no PP retriggers 50–75% BGA. PP 1st run in PP 2013 FEV8-CIP 1st full ASU FEV10 S/N ~ 17–18 (High 2015 4 units on test board Gain) 1024 channel retrigger ~ 50% 1st SLABs 2016 Slab:FEV11 10 units, 320µm S/N ~ 20 (12)_{Trig.} 6pre-calo 2017 **FEV 11** 7 units 8 % masked 1st technological 10 SLAB: SK2 & SK2a Improved S/N 2018 (1/64 masked ch.) **ECAL** 5 FEV11 320um (⊃timing) 5 FEV13 650*um Timing... Compact stack 2019 FEV12-COB 1 wafer, 500µm S/N ~ 22

1st "electric long slab" for ILC/ILD

Scale to support electronics

- Support of interface boards + 12 ASUs (DBD)
- 2+6+4 ASUs = ~3.2 m Max length for Endcaps
- Total access to upper and lower parts
 - 320µm Baby wafers (20×20 mm², 4×4 pixels)

Mechanical characteristics

- Movable: table and to beam test
- Rotatably along long axis (for beam test) Rigidity : $\leq \sim 1 \text{ mm for } 3\text{m}$
- No electrical contacts scale / cards

Shielding vs Light and CEM

Electronics adjustments

Path length induced reflexions on clock line

- Fluctuation over logical level
- Extra clock tick \rightarrow bad ASIC configuration
- RC filter adaptation (Sigrity simulation)
- Impedance adaptation required depending on length
 - Limited to 8 FEV11 + baby-wafers
- Noise in the signal
 - High frequency perturbation in the HV line
 - Solved by RC filters on the HV line
 - Possible back-propagation of ASICs noisy channel through HV ?

DESY-2018 beam test

2 weeks beg of July: full test of all prototypes:

- Electric long slab: 8 FEV11 + baby-wafers
- Very clean response to "mip" (punch through e-)
- 1/2h beam on each ASU @ 0, 45, 60°

common_calib_ls_ASU1_angle0_dif_1_1_1.raw

Mip analysis

MIP response vs position

mip MPV *cos(θ) vs ASU#

- OK for 4 1st ASU's
- − Small drop ~of signal ~2%/ASU for ≥ ASU#5
- Also hints similar drop on $\sigma_{\mbox{\tiny ped}}$

⇒ Voltage & Gain drop ? Power pulsed mode with ballast et end of slab (or just random build-up effect from chip variability ?)

MIP fluctuation

2 systematic effects has been identified

- Bandgap discrepency (over 128 ASICs).
 - σ =19.2 mV peak to peak=200mV
- Voltage linear decrease over slab length

Curve shape can be fitted by weighted sum of these two effects

MIP(ASU) = a * ASU + b - c * bandgap(ASU)

Solutions

- Reduce bandgap in ASIC design (already reduced in Skiroc2a version)
- Compensate bandgap by software
- Select ASICs to mitigate fluctuation
- Use fixed length power supply to avoid discrepancy

Bandgap (V)

2 52

bandgap

Requirements for an improved design

Better handling of signal:

- FEV13 much improved design
- FEV12-COB: ≠ problems on ASICs
- Improved ASIC: SK2a

HV distribution per ASU

- avoid noise back-propagation ?

LV per ASU ?

- or better regulation near / on ASIC ?
 - dissipation ?
- Flat Capacitors on board (but discontinued by Murata)

Longer ASUs ? ~ new ILD SiW-ECAL

- e.g. 16 \rightarrow 24 ASICs
- reduced # of ASU & connections:
 - $8 \rightarrow 6 \text{ ASU's in barrel}$
 - $12 \rightarrow 8 \text{ ASU's in endcaps}$

Use Larger wafers ?

- Geometry compatible with 6" and 8" matrices
- \triangle incompatible partitions:
 - $2 \times 16 = 32$ cells $\neq 27 = 1.5 \times 18$ cells
 - $3 \times 16 = 48$ cells $\neq 44 = 2 \times 24$ cells

Going to Ø 200mm × 725µm Wafers...

From CMS HGCAL development & Hamamatsu contacts: future is 200mm (8") ingots, 725 µm thickness

- \geq June 2020 ?
- Mechanical constraints \rightarrow ~187 mm alveoli, ~12 cm wafers

Improved performances due to thicker wafers:

- EM resolution: $\sigma(E)/E \propto ~1/5 \sqrt{(1+th/100 \mu m)}$
- Noise ~ C ~ width²/th
 - depl. Voltage @ cst conduct^y ~ th² \rightarrow leakage current stable ?
- − Signal ~ th *◄*,
 - **S/N ~ th² × 2 for 725μm vs 500 μm** (5 from 320μm)
 - \rightarrow Larger cells ? \rightarrow Less electronics \rightarrow Less heat, less $\in \!\! \in, \ldots$
 - \rightarrow less gain ? \rightarrow less heat OR $\,$ less noise \rightarrow faster readout, less heat
 - \rightarrow lower auto-trig thr, (1/3 mip @ 4 σ) \rightarrow 100% efficiency for mips also Improved timing perf (esp. for mips)

21.1

122 64 + 1/2 wafers

24×18 pads

Implication of HL schemes

 \Rightarrow Full ZERO suppr. needed

SPIROC2: 16 SCAx2 (HG or LG/Time) x 36 ch x 16 ADC bits + 16 SCAx16 BCID bits + 16 Header bits= 18 704 bits => 3.8 ms/Full Chip (Worst case) SKIROC2: 15 SCAx2 (HG or LG/Time) x 64 ch x 16 ADC bits + 15 SCAx16 BCID bits + 16 Header bits= 30 976 bits => 6 ms/Full Fhip (Worst case)

Passive cooling

Active cooling → 'Continuous colliders'

R&D using CMS studies (Courtesy of Th. Pierre-Emile from CMS-LLR group)

Copper plate prototype dimensions information

Pipe insertion on a cooling prototype for FEA correlation

Vincent.Boudry@in2p3.fr

- Pipe insertion process introduces some efficiency loss due to the thermal contact resistance.
- The benefit remains significant with regard to a passive cooling

Conclusions & prospectives

ILD Long Slab prototype

- 1st readout over long chain: design R&D, power distribution, grounding; connexions between ASU's
 - \Rightarrow adjustment on HV, & LV distribution, clock distribution was required:
 - ⇒ Decrease of response vs distance to PS (~10% in 8th ASU) ≡ 50% distribution, 50% ASIC variability
 - improved LV distribution or regulation
 - Need to complete test of ASIC prior to mounting for pairing

to be implemented in next versions of FEV's, BGA and COB

- 725µm thickness with 200mm (8") wafers ; 5.08 \rightarrow 6mm cell size
 - Gain on almost all aspects
- − Control for all elements prior to mounting: Wafers, ASICs, FEV, Connectors \Rightarrow DB of params

High- \mathscr{L} **schemes:** Power $\propto \mathscr{L}$ (semi-trivially)

- Full 0-suppr chips <u>and</u> adaptative noise mitigation needed

Back-up

Reduced gaps

Vincent.Boudry@in2p3.fr ILD SiW-ECAL Adaptative design

Tiling with 200mm (8'') wafers

9/22

Optimal cell-size (DBD)

Power estimations

mW P_ACQ P_CONV

P_CONV 90 P_RO 26

290

	TAU_PO/ms E_PO/µJ	Tau	_SPILL/ms E	_ACQ/µJ	τau_CONV/ms	E_CONV/µJ	E_SPILL/µJ	f_rep/Hz	P_TO1	Γ/μW F	P_TOT/µW/chR	atio HL/Lumi
ILC	0.005	1.450	1.000	290.000	0.10	9	300.4	45	5	1502.25	23.47	
HL-ILC	0.005	1.450	2.000	580.000	0.20	18	599.4	45	15	8991.75	140.5	5.99
CLIC	0.005	1.450	0.176	51.040	0.02	1.58	54.	. 70	50	2703.7	42.25	
HL-CLIC	0.005	1.450	0.176	51.040	0.02	1.58	54.	07 10	00	5407.4	84.49	2