Preparation and operation of SiW-ECAL technological prototype for DESY test beam 2019

Kyushu University : Kiichi Goto

ALI (CO

Microelectronics

NHE

PARIS

Yu Kato^B, Taikan Suehara^A, Yu Miura^A Izumi Sekiya^A, Kiyotomo Kawagoe^A, Vincent Boudry^c, Roman Poeschl^D, Adrian Irles^D, and ILD SiW-ECAL group. (A: Kyushu University, B: The University of Tokyo, C: LLR, D: LAL)

Contents

- Introduction
 - ILD, PFA, SiW-ECAL, ASIC
- Previous Test Beam
- Laboratory Test
 - Pedestal, ADC measurement, TDC measurement
- Test Beam 2019
 - Temperature analysis, Connection issues
- Summary and next plan

ILD (International Large Detector)

- ILD components
 - Vertex detector
 - Tracking detector
 - Electromagnetic calorimeter •
 - ScW-ECAL : using scintillator
 - SiW-ECAL : using Si semiconductor
 - Hadron calorimeter •
 - Muon detector

- Separation of the particles in jets

PFA (Particle Flow Algorithm)

SiW-ECAL

- The electromagnetic calorimeter in ILD is a sampling calorimeter with 20-30 layers
- SiW-ECAL
 - Tungsten (absorber)
 - Silicon (detector)
 - Silicon pixel size : 5 mm × 5 mm
 - Silicon pad : 90 mm × 90 mm (256 pixels)
 - Silicon thickness : 320 µm, 650 µm

- ASICs (SKIROC2/2A) are used as the integrated circuit for data taking
- SKIROC2A
 - 64 channels
 - 15 memory cells
 - ADC mode
 - ADC high and low gain
 - TDC mode
 - TDC ullet
 - ADC high or low gain

ASIC

The technological prototype

- Slab : just one layer of the SiW-ECAL
 - One slab has 4 silicon pads (1024 pixels)
 - read by 16 ASICs (1 ASIC : 64 ch)
- Now we are studying FEV13
- FEV11 \rightarrow FEV13
 - ASIC : SKIROC2 \rightarrow SKIROC2A
 - improvements on TDC and individual threshold
 - FEV/SMB connection : kapton sheet \rightarrow cable
 - avoiding to gluing trouble and easily detachable
 - Smaller SMB footprint

Assembly of the latest model (in Kyushu)

- 5 slabs were assembled in Kyushu University
- Gluing FEV and SMB to FPC
- Si thickness : 320 µm (P3/old), 650 µm (others/new)
 - for higher S/N ratio of charge and compared
- The difference of P and K
 - P : Flexible cable
 - K : Micro-coaxial cable

LCWS @ Sendai 2019/10/29

Gluing sensor to PCB in Kyushu

- 2018 (DESY)
 - Evaluation using the just one slab
 - Particle : electron (1 5 GeV)
 - We use the rigid PCB for HV connection
- 2018 (CERN/SPS)
 - Evaluation using the 5 slabs
 - Particle : muon, electron, pion (10 200 GeV)
 - HV connection was replaced to flex circuit
 - 4 slabs had the problem in HV \rightarrow could take good data with only one slab because of the carbon plates of older model (FEV8)

Previous Test Beams

with older carbon plate

Update from previous TB

- Replace the carbon plate on the backside
- New carbon plate :

pushing with screw improvement ·

problem

- leakage current •
- Temperature monitoring
 - Temperature monitoring by a chip on SMB prepared
 - Periodical temperature acquisition performed

- Pedestal means for all channels are measured with thermal noise
- Pedestal means are almost same within each ASIC chip

[ADC counts]

- Data acquisition test with radiation sources •
- Data were measured using the ¹³³Ba and ⁵⁷Co as gamma radiation sources
 - ¹³³Ba :
 - 356 keV (62.1%)
 - Compton edge : 207 keV
 - 81.0 keV (34.1%)
 - ⁵⁷Co: •
 - 122 keV (85.6%)
 - 136 keV (10.7%)

E80 -40 -60 -80^{60} 50 50 50

Hit map (¹³³Ba) <mark>---</mark>9000 8000 -7000 6000 4000 -3000 2000 1000 39 54 48 3 (° 1) 18 12 21 39 54 48 3²⁴ 19 18 12 21 39 54 48 3° 30 18 12 21 39 54 48 3 10 18 12 21 60 50 45 33 27 15 3 9 60 50 45 33 27 15 3 9 60 50 45 33 27 15 3 9 60 50 45 33 27 15 3 9 53 44 41 32 28 13 22 10 53 44 41 32 28 13 22 10 53 44 41 32 28 13 22 10 53 44 41 32 28 13 22 10 47 38 35 31 25 19 7 16 47 38 35 31 25 19 7 16 47 38 35 31 25 19 7 16 47 38 35 3 0 -80 -60 -40 -20 80 X[mm] 20 40 60

- ¹³³Ba ADC Histogram
- 0
 - Photoelectric peak
 - 81.0 keV
 - 64.8 ADC counts
- . 2
 - Compton edge
 - 207 keV
 - 173 ADC counts

• ⁵⁷Co ADC Histogram

• 0

- Photoelectric peak •
- 122 keV
- 97.9 ADC counts

Linearity of the ADC counts and Energy

- TDC mode operation test
- SKIROC2/2A has the ramp wave as one of the internal clocks
 - I measured this ramp waveform for calculating from TDC to real time factor
- The ramp wave can be measured with
 - synchronization of internal and external clock (injection signal)

- Using the following parameters
 - bunch crossing (BX) clock : 5 MHz
 - Injection frequency : 200 kHz
 - Injection voltage : 8.4 fC (~1 MIP with 650 µm Si)
 - Threshold (trigger) : 230
- TDC to real time calibration factors
 - 0.127 ns / TDC count (up)
 - 0.066 ns / TDC count (down)

TDC Ramp

15

Test Beam 2019 (1)

- Purpose :
 - Data acquisition with electron beam (MIP, Shower) •
 - Operation test (TDC, Auto Gain, etc.)
- 24th June 2019 7th July 2019 (DESY)
- Beam Status : electron, 1 5 GeV
- Setup : 5 slabs (Kyushu) and 4 slabs including 2 Chip-In-Boards (France)
 - MIP (without tungsten)
 - Shower (with tungsten)

Test Beam 2019 (2)

- The box was used in TB2019
 - 5 slabs (Kyushu) were installed to this box
 - 4 slabs including CIBs (France group) were also installed
- The order of slabs is shown by the picture
- In shower setup, We use two patterns of tungsten thickness 2.1 mm and 4.2 mm

box used in TB2019

Temperature for all slabs

• Time variation of temperatures for all slabs

Temperature and Pedestal mean variation

• Time dependance of the temperature and pedestal mean

ped_slab0_chip0_chn16_sca0 ped_slab0_chip0_chn17_sca0 ped_slab0_chip0_chn19_sca0 ped_slab0_chip0_chn20_sca0 ped_slab0_chip0_chn22_sca0 ped_slab0_chip0_chn23_sca0 Temperature of slab P1 Pedestal mean 19/07/03 19/07/01 19/06/30 19/07/04 19/07/02 19/07/05 09:00 09:00 09:00 09:00 09:00 Time [yy/mm/dd]

Connection issues

- We could take good data in this TB
- Some issues were happened for connections
- HDMI connection
 - HDMI connections are unstable and loose
- HV connector
 - HV connectors are too fragile
- Complicated cable connections
 - Three cables per a slab must be connected to outside of the box
- We should improve these issues

Inner

Summary and next plan

- Summary
 - Now, reading circuit for SiW-ECAL is optimized
 - We improved the slabs from previous TB
 - We measured ADC data using two gamma radiation sources
 - We calculated TDC calibration factors with charge injections
 - Detailed analysis results for this TB are shown in the next talk •

- Next plan ullet
 - measurement of TDC for all channels
 - solving these problem and making new version prototype

backup

ILC (International Linear Collider)

- Collision of the electron and positron
- Center of mass energy : 250 GeV
- Exploring new physics by precise measurement of the SM particle, especially higgs

- Two candidates of the detector
 - ILD (International Large Detector)
 - SiD (Silicon Detector)

ASIC(SKIROC2/2A)

- 15 memory cells
- trigger : 0.5 MIP
- high gain : 0.5 150 MIP
- low gain : 150 2500 MIP
- to protect Re-trigger

Pedestal mean

slab P1

Pedestal mean distribution

Pedestal width distribution •

講演番号

20aT14-9

Pedestal distribution

the number of masked channels slab P1

講演番号

Masked channels

Pedestal shift in TDC mode

ADC high gain (TDC mode) ADC high gain (ADC mode)

講演番号 20aT14-9

ADC low gain (ADC mode) ADC low gain (ADC mode)

Measurement program

- MIP programs :
 - Position scan
 - Angle beam
 - TDC mode
 - Re-triggering / Double pedestal
- Shower programs :
 - TDC mode
 - Auto gain
 - Edge effect

Laboratory Test

- S/N in the trigger line
 - defined by the study of the trigger line (fast shaper in SKIROC)
- threshold scans with charge injections
 - 1.4 mVpp : 1 MIP (4.2 fC)
 - 2.8 mVpp : 2 MIP (8.4 fC)
 - 5.6 mVpp : 4 MIP (16.8 fC)
- Finally S/N ratios for the threshold are

8.4 fC - 4.2 fC : 6.03 16.8 fC - 8.4 fC : 11.9

Laboratory Test

Linearity of threshold slabP1 chip15 ch56

Update in this TB (1)

- Replace the carbon plate on the backside and cover
- New carbon plate :
 - cutting the edge of the HV connector side
 - pushing with screw
 - leakage current (imperfect insulation found)

- Some issues were found for reading circuit
- Re-triggering :
 - dummy hits after the hit
- Double pedestal
 - now studying •

講演番号 20aT14-9

Double pedestal

Re-triggering

- the phenomenon filling the memory cells by some triggers after first hit in somewhere
- We don't know the detailing cause.
- Now we are trying to explore this problem.

