

Beam-spread determination for luminosity measurement @ CEPC

Collaboration High precision design

<u>Ivanka Bozovic Jelisavcic</u>, Ivan Smiljanic, Goran Kacarevic VINCA Institute of Nuclear Sciences, Belgrade, SERBIA - on behalf of the FCAL Collaboration -

LCWS19, 28 October - 1 November 2019, Sendai

Overview

- Requirements on beam-spread from ${\cal L}$ precision
- Experimental method
- s' sensitivity to beam-spread
- What do we need to be sensitive to 10^{-1,-2, -3} variations of the beam-spread?
- Conclusion

Requirements on beam-spread from ${\mathscr L}{\operatorname{precision}}$

10⁻³ in \mathscr{L} , 240 GeV CEPC, 10⁻⁴ @ Z⁰ pole

Asymmetric bias on beam energy

 $|E_+-E_-|=\Delta E \Longrightarrow \beta_z = \Delta E/E_{CM}$

- Longitudinal boost of the CM frame of the colliding particles to the lab frame β_7
- \Rightarrow counting loss due to the loss of colinearity
- Asymmetry in beam energies should be smaller than $10^{-3}(10^{-4})$ for the same \mathscr{L} uncertainty

Effective center of mass energy

- Bhabha cross-section changes as $\sim 1/s \implies$ relative uncertainty on (average net) CM energy $< 5 \cdot 10^{-4}$ for \mathscr{L} uncertainty of 10^{-3}
- If there is no asymmetry, there is no impact on counting

One needs to know asymmetry in beam energies as 12.5% of the beam- spread at Z⁰ pole (150%@240 GeV)

Experimental method

The method:

s' can determined be from the reconstructed muons polar angles

<i>s</i> ′ _	$\sin \theta^+ + \sin \theta^ \sin(\theta^+ + \theta^-) $
\overline{s} –	$\overline{\sin \theta^+ + \sin \theta^- + \sin(\theta^+ + \theta^-) }$

- Expected muon polar angle resolution over the whole tracking volume (i.e. 0.1 mrad corresponds to 100 µm position resolution in TPC)
- Method is proposed for FCCee [P. Janot, FCCee polarization WS, 2017]

Additional effects:

- ISR and FSR -
- Beam-beam interactions
- Muon polar angle resolution -

- What is the sensitivity (of s') to beam-spread, additional effects and detector resolution?
- How many muons (what time) one needs to achieve aimed sensitivity?

s' sensitivity to beam-spread

We need:

- Excellent theoretical description of ISR
- Full detector simulation impact of the resolution
- Presence of backgrounds

s' sensitivity to beam-spread + BS+detector resolution

s' remains sensitive to beam-spread in the presence of ISR and Beamstrahlung

(this is WHIZARD default parameterization for TESLA beam, should be smaller at CEPC (ongoing study))

green - beamspread+ISR +tracker 0.1mrad

red - beamspread+ISR

Impact of estimated 0.1 mrad and 1 mrad detector resolution @ 91 GeV

Apparently, 0.1 mrad (100 μ m TPC) doesn't compromise sensitivity to the beam-spread

s' sensitivity to detector resolution

Can the method survive weaker tracking performance? What is the uncertainty of the tracker resolution? 7

One should stick to the foreseen 0.1 mrad muon angular resolution (100 μ m track resolution for TPC) to be known with 0.1 mrad margin

Beam-spread determination from s'

s' sensitivity to beam-spread @ 91 GeV (left) and 240 GeV (right)

250 kEvt. at Z⁰ pole and 100 kEvt. at 240 GeV are sensitive to the beam-spread variations at 2.5 % (15 %) level, respectively

What do we need to be sensitive to $10^{-1,-2,-3}$ variations of the beam-spread?

		Table of assu	mptions w.r.t. tim	e/statistics		
	Luminosity @ IP (cm ⁻² s ⁻¹)	Energy spread (%)	Number of events	Cross-section e⁺e⁻→µ⁺µ⁻	Collecting time	Beam-spread variation
Z pole (91.2 GeV)	32·10 ³⁴	0.080	250K	1.5 nb	$ \begin{array}{c} \sim 10 \text{ min} \\ (2 \text{ min for } 10^{-4} \\ \text{ of } \mathcal{L}) \end{array} $	~2.5·10 ⁻² ·δE _b (900 keV)
Higgs factory (240 GeV)	3·10 ³⁴	0.134	100K	4.1 pb	~ 10 days**	~ 0.15∙δE _b (~24 MeV)
FCCee Z pole* * [P. Janot, FCCee p	2.3·10 ³⁶ polarization WS, 2017	0.132 7]	540 K	1.5 nb	~ 3 min	~2·10 ⁻³ ·δE _b (~120 keV)

9

** For \mathscr{L} uncertainty of 10⁻³ we don't need control better than the beam-spread of 0.134% (so the second row is for illustrative purposes)

Further motivation

It is interesting to note that other observables critically depend on the knowledge of the beamspread (@ Z⁰ pole):

- cross-section
- Z⁰ total width
- Z⁰ mass

* [P. Janot, FCCee polarization WS, 2017]

Conclusions

- Method (proposed for FCCee) of beam-spread determination based on muon polar angle reconstruction **nicely works at low energies** (Z⁰ pole), due to high e⁺e⁻→µ⁺µ⁻ cross-section and high instantaneous luminosity
- @ Z⁰ pole CEPC, ~2.5% accuracy of the beam spread is feasible (i.e. < 1 MeV)
- Integrated luminosity control of 10⁻⁴ at the Z⁰ pole, requires 2 min of data collection
- @ 240 GeV, beam-energy asymmetry within the existing beam-spread is satisfactory
- Method requires further study: effect of ISR (theoretical) uncertainty, full detector simulation, impact of similar final states backgrounds
- It is also interesting to check if the method is still applicable at ILC Z⁰ pole, in the presence of beam-induced effects that are significantly larger than at circular machines