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Motivation for forward calorimeters
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« Luminosity measurement
e |Instantaneous - BeamCal

« Beam-tuning (as a part of the fast-feedback system)-
BeamCal

* Integrated - LumiCal (8£~103)

« High-energy electron identification at low angles - all
« Detector hermeticity (coverage < 5 mrad)
 Physics studies (BSM, background suppression, etc.)

LumiCal BeamCal

 Shielding the central tracker from the backscattered particles

A common sandwich design for LumiCal and BeamCal
FCAL development for ILC and CLIC
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» Design

» Cylindrical Silicon-Tungsten sandwich

» 30-40 sensor/1 X, (3.5mm) absorber planes
320 um sensor thickness/1 mm gap
Radial segmentation: 64 pads with 1.8 mm pitch
Azimuthal segmentation: 48 sectors covering 7.5 deg each
FE electronics outside the calorimeter

* Requirements

» High mechanical precision (polar angle measurement, luminosity
systematics)

» Small Moliere radius (shower position and energy measurement in
the presence of widely spread background)

» Electron-photon discrimination

» Radiation hardness, high occupancy (BeamCal, GaAs instead of Si
in the baseline design)
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Test-beam with ultra-thin detector planes
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~640“m

N

Kapton HV: 65um

» Several test-beam campaigns

* In 2014 with 4-plane calorimeter
prototype

« The 2016 one with the ultra-thin
detector planes <1mm

Kapton Fan out: 120um

Tungsten plate
0 _‘ \

« 8 detector planes ) f c 5
7 7 7 apton-copper fanout N
« Ultrasonic wire-bonding (50-100 - g = 1
/ raldite epoxy and & 3
Mm lOOp he]ght) ultrasonic wire bonding \ e %
LumiCal Silicon sensor__ = o =
« Aimed to test: il . =
. glue \ i
. Performance Of the Compact High voltage kapton Glue: 10-20um /

Calorimeter Araldite epoxy _

» Concept of the
tracker+calorimeter for e/y
separation (ongoing)

Carbon fiber support
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Test-beam setup
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Sl T1  Tg T2 Sc2 5¢3 Trac:ker LumiCal

Magnet

DESY-II Synchrotron electron beam 1-5 GeV (beam size 5x5 mm?)
* T1, T2 Eudet telescopes each with 3 MIMOSA Si-pixel planes
Sc1,2,3 scintillator trigger

» Tg copper target

Dipole magnet -13 kGs for e/y separation

8 detector planes (6 -LumiCal, 2-tracker)

Mechanical structure developed by CERN

128 read-out channels per plane

tracker planes 6
+ 8 W absorber plates
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Overall performance
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» FE electronics performance (modified APV25 board):

» Efficiency vs. signal size is used to correct (simulation) for signals with
amplitude smaller than 10 MIPS (1MIP=88.5 keV)

» Signal to noise ratio is (7-10) for most channels

» Detector response:
» Excellent linearity (after leakage correction from simulation)
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Measurement of the shower position
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» Reconstruction of the shower radial position:

Y(. — M‘ % 10 i<103
Z Wiy 1% -  Electron beam 5 GeV —— First plane
" 2 % First plane fit
(&) - -
» Y- postion of the pad, m runs over all hit pads S 8F — Second plane
: : 7 7 7 7 o 7E —— Second plane fit
« W, - logarithmic weight, W,=3.4=const. (obtained from simulation) £ o
= =
E = sp
w, =max {0; Wy +1In - 4
{ Zj E; } =
3
- . . . 2
» Reconstruction is evaluated w.r.t. to the hit positions in E
tracker planes 0 =R . S |
4 -2 0 2 4
 Resolution of (440+20) um is found Radial residuals, mm
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Longitudinal shower development

» Energy deposition per layer (averaged):

daver (e
(E,™"y = (EX")

n

* Runs over radial pads n of the two instrumented central sectors

« Shower maximum at layer 7

« Good agreement between data and MC (within statistical
uncertainties)
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Transverse shower development
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Effective Moliere radius

For a prototype as a whole an effective
Moliere radius Ry, can be defined:

2 RM
0.9 = f d(pj Fg(r) rdr
0 0

» corresponding to the radial size within which
90% of a shower energy is contained

Effective R, depends a bit on electron energy
due to the limited longitudinal coverage with
existing number of sensor planes

Ry also depends on the detector structure (i.e.
air-gaps)

With R,=(8.1£0.1(stat.)+0.3(syst.))m
feasibl'iAty of constructmg a compact
calorimeter is demonstrated

Consistent with the ILC conceptual design
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Reducing the air gap from
4.5mm to 1mm Moliere
radius decrease from 21mm
to 12mm
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Towards the compact calorimeter prototype
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» Ongoing analyses and efforts:

/ Impact of the Si-tracker planes in front of the LumiCal Loss of small signals due to noise (corrected for in the analysis)

« Development of FE electronics with large input é N . .
range/smaller signal R Saturation of FE chip _ Dgtg
* Maximization of the instrumented sensor area o 1
2 107 —MC
E i
 FLAME (FCAL ASIC for multiplane readout) development 102 LI 1 MIP = 88 5
» 8 FLAME ASICs per plane (256 channels) ready for the test-beam : keV
« Test-beam 2019 & 2020 goals with 20 instrumented detector 10 4
planes: i
» Shower angular and energy resolution 15 | | | s
« Moliere radius 0 20 40 60 80 100
. e/y separation Deposited Energy, MIP
FCAL is taking unique data allowing development of expertise in compact calorimetry .
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Summary
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« Compact calorimeters to instrument the very forward region of an e+e- collider are
designed, simulated and prototyped by the FCAL Collaboration.

» Moliere radius of R,=8.1+0.1(stat.)+0.3(syst.) mm, measured in the test-beam,
demonstrates feas{[\)lllty of such a compact calorimeter. For the first time in this
effort, sub-millimeter detector planes are produced.

» Detector prototype exhibited linearity of response to 1-5 GeV electron test-beam.

» Measured shower reconstruction precision and longitudinal shower development
are in agreement with MC expectation.

» Further steps lead into direction of development/production of FE electronics with
large input range and maximization of the instrumented sensor area (FLAME).

@ calorimeter is consistent with the conceptual design optimized for a high pre@
luminosity measurement at ILC and CLIC
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Backup
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DAQ for the test-beam

« Scalable Readout System (SRS),
based on APV25 front-end chip
used for read-out:

» 128 channels per detector
plane

« APV25 FE board applicable
for signal >8 MIP

* To correct for that,

Capacitive Charge Divider
connected to the APV input
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Uncertainties of Ry,
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Uncertainty of the measured efficiency of the signhal identification +£0.16 mm
Uncertainty of the particle impact position £0.13mm

Misalignment of detector planes +£0.08 mm

Uncertainty due to bad channels £0.14mm

Noise uncertainty - negligible

Calibration uncertainty of 5% for the APV read-out £0.14mm
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