

A compact fine-grained calorimeter for luminosity measurement at a linear collider

Ivanka Bozovic Jelisavcic

VINCA Institute of Nuclear Sciences, Belgrade, SERBIA

- on behalf of the FCAL Collaboration -

Overview

- Introduction
 - Motivation
 - Design
- Test-beam results with ultra-thin detector planes
 - Shower position reconstruction
 - Longitudinal and transverse shower development
 - Effective Moliere radius
- Towards the compact calorimeter prototype
- Summary

Eur. Phys. J. C (2019) 79:579 https://doi.org/10.1140/epjc/s10052-019-7077-9

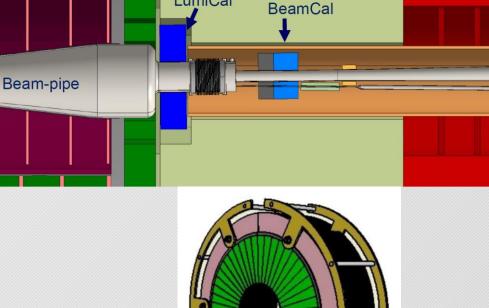
Regular Article - Experimental Physics

Performance and Molière radius measurements using a compact prototype of LumiCal in an electron test beam

H. Abramowicz¹, A. Abusleme², K. Afanaciev³, Y. Benhammou¹, O. Borysov¹, M. Borysova^{1,13}, I. Bozovic-Jelisavcic⁴, W. Daniluk³, D. Dannheim⁶, M. Denichev⁷, K. Elsene⁴, M. Firlej⁸, E. Firu⁹, T. Flutowski⁸, V. Ghenescu⁹, M. Gostkin¹, M. Hempel^{10,13}, H. Henschel¹⁰, M. Idzik⁸, A. Ignatenko¹¹, S. A. Ishikawa¹¹, A. Joffe¹, G. Kacarevic², S. Kananov¹, O. Karacheban^{10,14}, W. Klempf⁶, S. Kotov⁷, J. Kottula³, U. Kruchonak⁷, Sz. Kuliš⁵, W. Lange¹⁰, J. Leonard¹⁰, T. Lesisk⁵, A. Levi¹⁵, I. Linssen⁶, W. Lohmann^{10,14}, J. Moron⁸, A. Moszczynski¹⁷, A. T. Neagu⁹, B. Pawlik⁵, T. Preda⁹, A. Sailer⁶, B. Schumm¹², S. Schuwalow^{10,16}, E. Sicking⁶, K. Swientek⁸, B. Turbiarz⁵, N. Vukainovic⁴, T. Wojton⁵, H. Yamanoto¹¹, L. Zawiejski⁵, I. S. Zgura⁹, A. Zhenchugov⁷
¹ Raymond & Beverly Sackler School of Physics & Atoronomy, Tel Aviv University, Tel Aviv, Israel ² Department of Electical Engineering. Pontificia Universidad Catolica de Chile, Santiago, Chile ³ Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia

- ⁵ IFJ PAN, 31342 Kraków, Poland ⁶ CEPN Commo Switzer ⁶ CEPN
- ⁶ CERN, Geneva, Switzerland ⁷ JINR, Dubna, Russia
- 8 Facility of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland
- ⁹ ISS, Bucharest, Romania ¹⁰ DESY, Zeuthen, Germany
- ¹⁰ DESY, Zeuthen, Germany ¹¹ Tohoku University, Sendai, Japan ¹² Description (1998)
- ¹² University of California, Santa Cruz, USA ¹³ Visitor from Institute for Nuclear Research N
- ¹³ Visitor from Institute for Nuclear Research NANU (KINR), Kyiv 03680, Ukraine ¹⁴ Brandenburg University of Technology, Cottbus, Germany
- Present address: DESY, Zeuthen, Germany
 ¹⁶ DESY, Hamburg, Germany

Received: 30 December 2018 / Accepted: 27 June 2019 / Published online: 10 July 2019 \circledcirc The Author(s) 2019

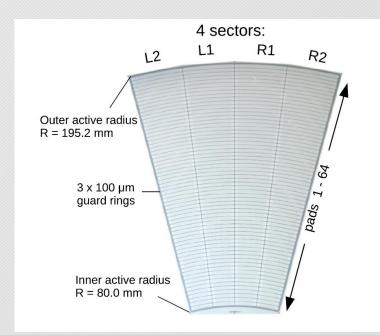

Abstract A new design of a detector plane of submillimetre thickness for an electromagnetic sampling

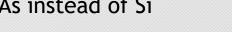
Eur.Phys.J C (2019)79:579

Motivation for forward calorimeters

- Luminosity measurement
 - Instantaneous BeamCal
 - Beam-tuning (as a part of the fast-feedback system)-BeamCal
 - Integrated LumiCal ($\delta \mathcal{L} \sim 10^{-3}$)
- High-energy electron identification at low angles all
 - Detector hermeticity (coverage < 5 mrad)
 - Physics studies (BSM, background suppression, etc.)
- Shielding the central tracker from the backscattered particles

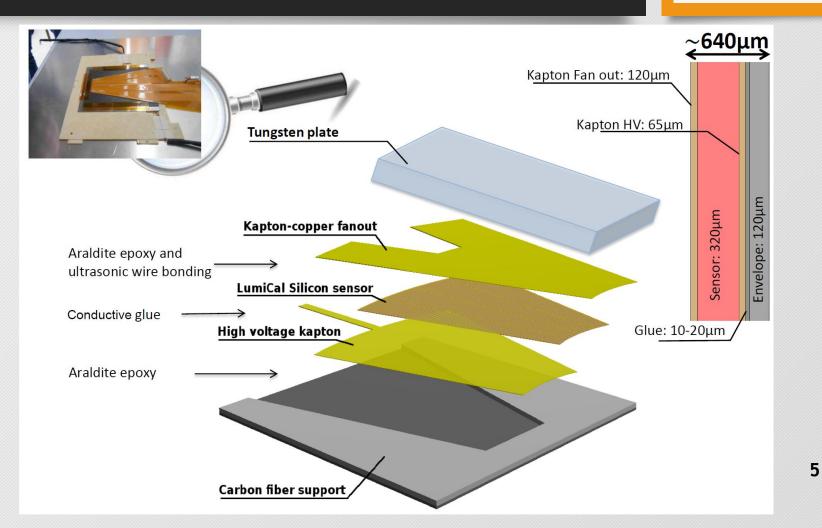
A common sandwich design for LumiCal and BeamCal FCAL development for ILC and CLIC

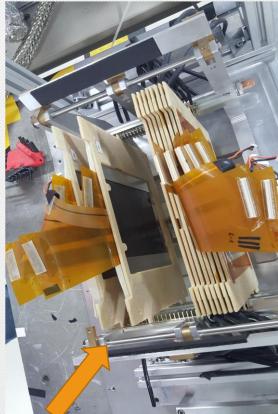

LumiCal



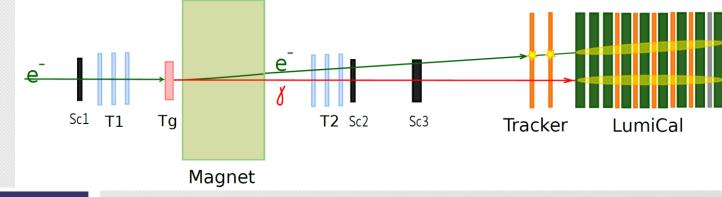
Design

Design


- Cylindrical Silicon-Tungsten sandwich
- 30-40 sensor/1 X_0 (3.5mm) absorber planes
- 320 μm sensor thickness/1 mm gap
- Radial segmentation: 64 pads with 1.8 mm pitch
- Azimuthal segmentation: 48 sectors covering 7.5 deg each
- FE electronics outside the calorimeter
- Requirements ٠
 - High mechanical precision (polar angle measurement, luminosity) systematics)
 - Small Moliere radius (shower position and energy measurement in the presence of widely spread background)
 - Electron-photon discrimination
 - Radiation hardness, high occupancy (BeamCal, GaAs instead of Si in the baseline design)


Test-beam with ultra-thin detector planes

- Several test-beam campaigns
 - In 2014 with 4-plane calorimeter prototype
- The 2016 one with the ultra-thin detector planes <1mm
 - 8 detector planes
 - Ultrasonic wire-bonding (50-100 μm loop height)
- Aimed to test:
 - Performance of the compact calorimeter
 - Concept of the tracker+calorimeter for e/γ separation (ongoing)



ollaboratio

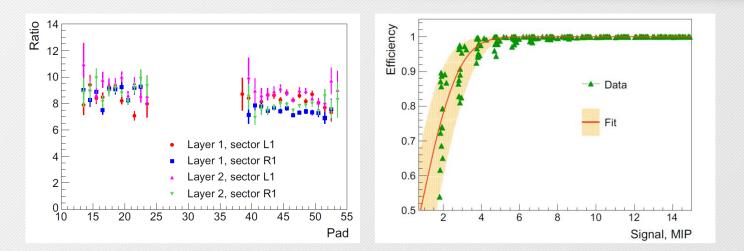
Test-beam setup

tracker planes

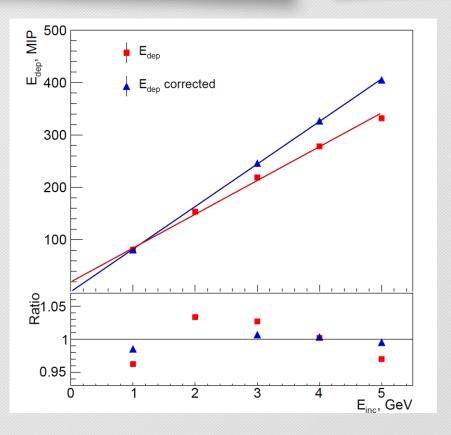
- DESY-II Synchrotron electron beam 1-5 GeV (beam size 5x5 mm²)
 - T1, T2 Eudet telescopes each with 3 MIMOSA Si-pixel planes

• Sc1,2,3 scintillator trigger

Tg copper target


ollaboration

- Dipole magnet -13 kGs for e/γ separation
- 8 detector planes (6 -LumiCal, 2-tracker)
 - 128 read-out channels per plane
 - 8 W absorber plates


6

• External electronics

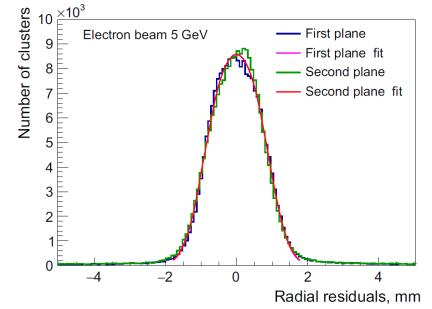
Overall performance

- FE electronics performance (modified APV25 board):
 - Efficiency vs. signal size is used to correct (simulation) for signals with amplitude smaller than 10 MIPS (1MIP=88.5 keV)
 - Signal to noise ratio is (7-10) for most channels
- Detector response:
 - Excellent linearity (after leakage correction from simulation)

ollaboration

Measurement of the shower position

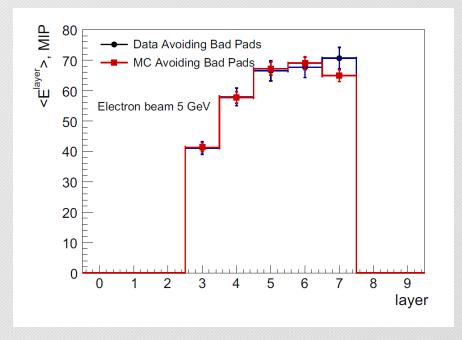
• Reconstruction of the shower radial position:


 $Y_c = \frac{\sum_m Y_m w_m}{\sum_m w_m},$

- Y_m postion of the pad, *m* runs over all hit pads
- W_m logarithmic weight, $W_0=3.4=const.$ (obtained from simulation)

 $w_m = max \left\{ 0; W_0 + \ln \frac{E_m}{\sum_j E_j} \right\}$

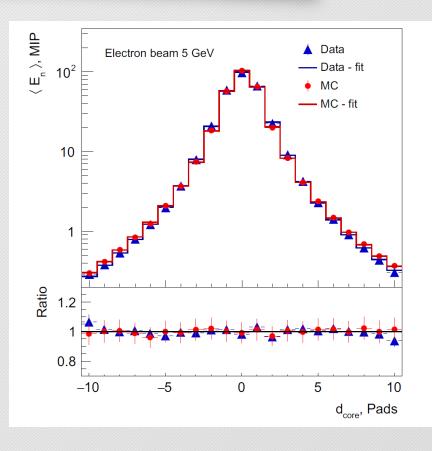
- Reconstruction is evaluated w.r.t. to the hit positions in tracker planes
- Resolution of (440 \pm 20) μ m is found


Longitudinal shower development

• Energy deposition per layer (averaged):

 $\langle E_l^{layer}\rangle = \sum_n \langle E_{nl}^{det}\rangle$

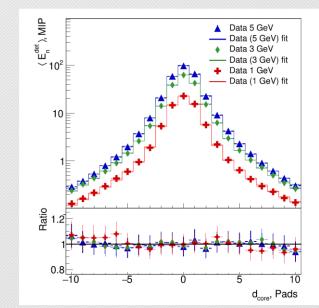
- Runs over radial pads *n* of the two instrumented central sectors
- Shower maximum at layer 7
- Good agreement between data and MC (within statistical uncertainties)

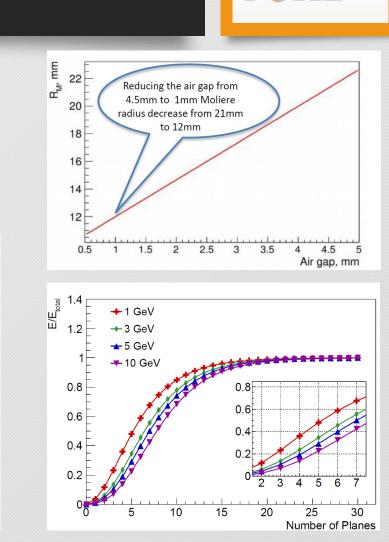

Transverse shower development

• Function used to describe (fit) the transverse profile:

 $F_E(r) = A_C e^{-\left(\frac{r}{R_C}\right)^2} + A_T \frac{2r^{\alpha} R_T^2}{(r^2 + R_T^2)^2}$

- Gaussian terms to describe shower core, Grindhammer-Peters term to describe the tail
- Very good agreement between data and Geant4 based MC

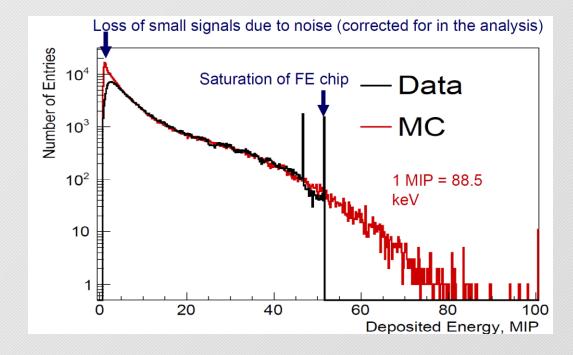



Effective Moliere radius

• For a prototype as a whole an *effective* Moliere radius R_M can be defined:

$$0.9 = \int_0^{2\pi} d\varphi \int_0^{R_M} F_E(r) r dr$$

- corresponding to the radial size within which 90% of a shower energy is contained
- Effective R_M depends a bit on electron energy due to the limited longitudinal coverage with existing number of sensor planes
- R_M also depends on the detector structure (i.e. air-gaps)
- With R_M=(8.1±0.1(stat.)±0.3(syst.))mm, feasibility of constructing a compact calorimeter is demonstrated
- Consistent with the ILC conceptual design



ollaboration

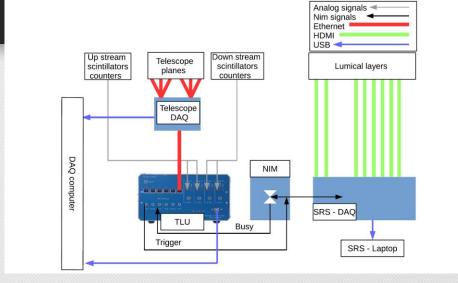
Towards the compact calorimeter prototype

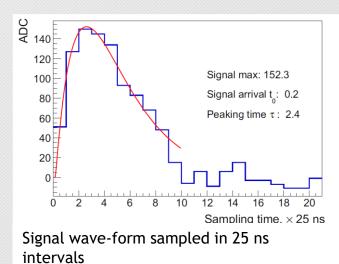
- Ongoing analyses and efforts:
 - Impact of the Si-tracker planes in front of the LumiCal
 - Development of FE electronics with large input range/smaller signal
 - Maximization of the instrumented sensor area
- FLAME (FCAL ASIC for multiplane readout) development
 - 8 FLAME ASICs per plane (256 channels) ready for the test-beam
- Test-beam 2019 & 2020 goals with 20 instrumented detector planes:
 - Shower angular and energy resolution
 - Moliere radius
 - e/γ separation

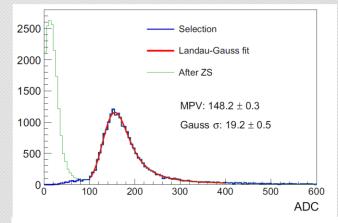
FCAL is taking unique data allowing development of expertise in compact calorimetry

- Compact calorimeters to instrument the very forward region of an e+e- collider are designed, simulated and prototyped by the FCAL Collaboration.
- Moliere radius of R_M =8.1±0.1(stat.)±0.3(syst.) mm, measured in the test-beam, demonstrates feasibility of such a compact calorimeter. For the first time in this effort, sub-millimeter detector planes are produced.
- Detector prototype exhibited linearity of response to 1-5 GeV electron test-beam.
- Measured shower reconstruction precision and longitudinal shower development are in agreement with MC expectation.
- Further steps lead into direction of development/production of FE electronics with large input range and maximization of the instrumented sensor area (FLAME).

Such a calorimeter is consistent with the conceptual design optimized for a high precision luminosity measurement at ILC and CLIC


Backup




LCWS19, 28 October - 1 November 2019, Sendai

DAQ for the test-beam

- Scalable Readout System (SRS), based on APV25 front-end chip used for read-out:
 - 128 channels per detector plane
 - APV25 FE board applicable for signal >8 MIP
 - To correct for that, Capacitive Charge Divider connected to the APV input

Collaboration

Signal shape per single pad of a detector plane

LCWS19, 28 October - 1 November 2019, Sendai

Uncertainties of R_M

- Uncertainty of the measured efficiency of the signal identification ± 0.16 mm
- Uncertainty of the particle impact position ±0.13mm
- Misalignment of detector planes ± 0.08 mm
- Uncertainty due to bad channels ± 0.14 mm
- Noise uncertainty negligible
- Calibration uncertainty of 5% for the APV read-out $\pm 0.14 \text{mm}$