

Analysis of the Higgs Potential in Extended Gauge-Higgs Unification Models Mitsuru Kakizaki (University of Toyama)

October 30, 2019 International Workshop on Future Linear Colliders 2019 (LCWS2019) Sendai

- Collaborator:
 Shin Suzuki (University of Toyama)
- Paper in preparation

Contents

- 1. Introduction
- 2. Model
- 3. Results
- 4. Summary

Motivation

Discovery of the 125 GeV Higgs boson h at the CERN LHC

 The Standard Model (SM) has been established as a low-energy effective theory below O(100) GeV

This is not the end of the story

Puzzles in the Higgs sector

- Guiding principle?
- Shape of the Higgs potential (multiplets, symmetries, ...)?
- Dynamics behind the electroweak symmetry breaking (EWSB)?

Phenomena beyond the SM (BSM)

- Baryon asymmetry of the Universe (BAU) Cosmic inflation
- Existence of dark matter

- Neutrino oscillations

Idea: Higgs sector = Window to New Physics

The structure of the Higgs sector is related to BSM models

Information on new physics can be obtained by investigating the properties of the Higgs sector

Hierarchy problem and paradigms

Mass squared of the Higgs boson

Fine-tuning with accuracy of 10^{-30} is necessary

New paradigms at the TeV scale

- Supersymmetry
- Composite models
- Gauge-Higgs unification (GHU)

Gauge-Higgs unification

Features of gauge-Higgs unification

- TeV scale extra special dimension(s) is introduced
- The Higgs doublet is the extra component of a gauge field
- Higgs interactions are controlled by the gauge principle
- The Higgs potential is flat at the tree level and determined by loop effects
- The imprints of Kaluza-Klein (KK) particles are testable at colliders [See Hosotani's talk, Futatsu's talk]

Difficulties in gauge-Higgs unification

The Higgs boson, top quark and KK particles are too light

5

Weinberg angle is too large

Attempts

Earlier studies of gauge-Higgs unification

Flat space

- Minimal SU(3) model [e.g. Scrucca, et al., NPB 669 (2003), etc.]
- SU(3) model with large representations
 [e.g. Cacciapaglia, Csaki, Park, JHEP 0603 (2006);
 Adachi, Maru, PRD 98 (2018), etc.]
- SU(3) model with 5D Lorentz symmetry relaxed
 [e.g. Panico, Serone, Wulzer, NPB 739 (2006), etc.]

Warped space

- SO(5) X U(1) model
 [e.g. Funatsu, Hatanaka, Hosotani, Orikasa, Shimotani, PLB 722 (2013), etc.]
- The masses of the Higgs boson and KK particles are determined by the Higgs potential

Goal of this work

 Analysis of the Higgs potential in the SU(3) model with 5D Lorentz symmetry relaxed

Contents

- 1. Introduction
- 2. Model
- 3. Results
- 4. Summary

SU(3) model

Space-time

• Flat $M^4 \times S^1/Z_2$

 R^{-1} : compactification scale

Orbifold breaking to the electroweak gauge symmetry

$$SU(3)_w \times U(1)'$$

Boundary $A_M(y+2\pi R)=A_M(y)$ conditions $A_\mu(-y)=P^\dagger A_\mu(y)P$ $A_5(-y)=-P^\dagger A_5(y)P$

$$A_M(y + 2\pi R) = A_M(y)$$

$$A_{\mu}(-y) = P^{\dagger} A_{\mu}(y) P$$

$$A_5(-y) = -P^{\dagger} A_5(y) P$$

$$A_{\mu} = \left(egin{array}{cccc} (+,+) & (+,+) & (-,-) \ (+,+) & (+,+) & (-,-) \ (-,-) & (-,-) & (+,+) \end{array}
ight) \quad A_{5} = \left(egin{array}{cccc} (-,-) & (-,-) & (+,+) \ (-,-) & (+,+) & (+,+) & (-,-) \end{array}
ight)$$

$$A_5 = \begin{pmatrix} (-,-) & (-,-) & (+,+) \\ (-,-) & (-,-) & (+,+) \\ (+,+) & (+,+) & (-,-) \end{pmatrix}$$

$$SU(2)_L \times U(1)_Y \times U(1)_X$$

Zero modes of the gauge fields

$$A_{\mu}^{(0)} = \frac{1}{2} \begin{pmatrix} W_{\mu}^{3} & \sqrt{2}W_{\mu}^{+} & 0 \\ \sqrt{2}W_{\mu}^{-} & -W_{\mu}^{3} & 0 \\ 0 & 0 & 0 \end{pmatrix} + B_{\mu}, X_{\mu} \qquad A_{5}^{(0)} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & H^{+} \\ 0 & 0 & H^{0} \\ H^{-} & H^{0^{*}} & 0 \end{pmatrix}$$
Higgs doublet

$$A_5^{(0)} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & H^+ \\ 0 & 0 & H^0 \\ \hline H^- & H^{0^*} & 0 \end{pmatrix}$$

Field configuration

Fields

[Panico, Serone, Wulzer, NPB 739 (2006)]

- Bulk gauge fields: A_M
- Bulk fermions: $\{\Psi_t, \widetilde{\Psi}_t\}, \{\Psi_b, \widetilde{\Psi}_b\}, \{\Psi_A, \widetilde{\Psi}_A\}$
- Brane fermion pairs: $Q_L = (t_L, b_L)^T, t_R, b_R$

5D matter Lagrangian for the 3rd generation quarks

$$\mathcal{L}_{\text{mat}} = \sum_{j=t,b,A} \left\{ \bar{\Psi}_{j} \left(iD_{4} - k_{j}D_{5}\gamma^{5} \right) \Psi_{j} + \bar{\bar{\Psi}}_{j} \left(iD_{4} - \bar{k}_{j}D_{5}\gamma^{5} \right) \tilde{\Psi}_{j} + \frac{1}{\pi R} \left(\bar{\Psi}_{j}\lambda_{j}\tilde{\Psi}_{j} + \text{h.c.} \right) \right\}$$

$$+ \delta(y - 0) \left\{ \bar{Q}_{L}iD_{4}Q_{L} + \sqrt{\frac{2}{\pi R}} \left(\epsilon_{1}^{b}\bar{Q}_{L}\psi_{b} + \epsilon_{1}^{t}\bar{Q}_{R}^{c}\psi_{t} + \text{h.c.} \right) \right\}$$

$$+ \delta(y - \pi R) \left\{ \bar{t}_{R}iD_{4}t_{R} + \bar{b}_{R}iD_{4}b_{R} + \sqrt{\frac{2}{\pi R}} \left(\epsilon_{2}^{b}\bar{b}_{R}\chi_{b} + \epsilon_{2}^{t}\bar{t}_{L}^{c}\chi_{t} + \text{h.c.} \right) \right\}$$

Model parameters

$$\epsilon_1^t$$
, ϵ_2^t , ϵ_1^b , ϵ_2^b , λ_t , λ_b , λ_A , k_t , k_b , k_A

Mass of the top quark

$$m_t \lesssim \sqrt{2}k_t m_W$$

Larger top quark mass

(For simplicity, $k_j = \tilde{k}_j$)

5D Lorentz invariance relaxed!

Higgs sector

Higgs potential

$$\begin{split} V_{\mathrm{eff}} &= V_{\mathrm{eff}}^{0} + V_{\mathrm{eff}}^{1\mathrm{loop}} & A_{5}^{6(0)} = \frac{2\alpha}{g_{4}R} \\ V_{\mathrm{eff}}^{0} &= 0 \\ V_{\mathrm{eff}}^{1\mathrm{loop}}(\alpha) &= -3\sum_{A=W^{\pm},Z}\sum_{n=-\infty}^{\infty}\frac{i}{2}\int\frac{d^{4}p}{(2\pi)^{4}}\mathrm{ln}\left\{-p^{2} + m_{A}^{(n)^{2}}(\alpha)\right\} & \longleftarrow \text{Bulk gauge} \\ &+ 4\cdot2\sum_{j=t,b,A}\sum_{q}\sum_{n=-\infty}^{\infty}\frac{i}{2}c_{j}\int\frac{d^{4}p}{(2\pi)^{4}}\mathrm{ln}\left\{-p^{2} + m_{\Psi_{J}}^{(n)^{2}}(q\alpha)\right\} & \longleftarrow \text{Bulk fermion} \\ &+ 4\sum_{j=t,b}\frac{i}{2}c_{a}\int\frac{d^{4}p}{(2\pi)^{4}}\mathrm{ln}\left\{-Z_{1}^{a}(\alpha)Z_{2}^{a}(\alpha)\,p^{2} + m_{a}^{2}(\alpha)\right\} & \longleftarrow \text{Brane fermion} \end{split}$$

Mass of the Higgs boson

$$m_h^2 = \left(rac{g_4 R}{2}
ight)^2 \left.rac{\partial^2 V_{
m eff}(lpha)}{\partial lpha^2}
ight|_{lpha=lpha_0} \quad v = rac{2lpha_0}{g_4 R} \quad {
m Very\ roughly} \ m_h \propto k^2 \quad {
m Larger\ Higgs\ boson\ mass}$$

Triple Higgs boson coupling

$$\lambda_{hhh} = \left(\frac{g_4 R}{2}\right)^3 \left. \frac{\partial^3 V_{\text{eff}}(\alpha)}{\partial \alpha^3} \right|_{\alpha = \alpha_0}$$

October 30, 2019

Contents

- 1. Introduction
- 2. Model
- 3. Results
- 4. Summary

Top quark mass vs Higgs boson mass

Our results are consistent with earlier works

[Panico, Serone, Wulzer, NPB 739 (2006), etc.]

October 30, 2019 Mitsuru Kakizaki 12

Top quark mass vs Higgs boson mass (contd.)

Triple Higgs boson coupling

Deviation from the SM prediction

$$\Delta \lambda = \frac{\lambda_{hhh} - \lambda_{hhh}^{SM}}{\lambda_{hhh}^{SM}}$$

- Constraints:

152 GeV
$$< m_t < 182$$
 GeV
110 GeV $< m_h < 140$ GeV

Future colliders

- HL-LHC: $-1.3 \lesssim \Delta \lambda \lesssim 8.7$
- ILC ($\sqrt{s} = 1 \text{ TeV } L = 5 \text{ ab}^{-1}$): $\Delta \lambda : 10\%$

[Fujii et al. (2015)]

The observation of a significant deviation requires additional extensions of the models

October 30, 2019 Mitsuru Kakizaki 14

4. Summary

- We have revisited gauge-Higgs unification models with 5D Lorentz invariance relaxed
- In such models, the masses of the Higgs boson, top quark and KK particles can be consistent with experimental data
- The observation of a significant deviation in the triple Higgs boson coupling at future linear colliders with energy upgrades requires additional extensions of the models

Backup slides