Systematic studies for high precision heavy quark analyses

Adrian Irles, François Richard, Roman Pöschl

On behalf of the

Collaboration

LCWS 2019 October/November 2019, Sendai Japan

Introduction

$$R_{
m b}{}^0 = \Gamma_{
m bar{b}} / \Gamma_{
m had}$$

b-quark identification. No need to measure an angular distribution, a priori.

$$\frac{d\sigma}{d\cos\theta}$$

$$A_{FB} = \frac{N_F - N_B}{N_F + N_B}$$

The angular distribution relies on the jet charge measurement

The b-quark polar angle is defined as a polar angle of the vector

$$\vec{p}_{b\bar{b}} = \vec{p}_b - \vec{p}_{\bar{b}},$$

N.B.: Will focus on b-quarks but same arguments hold of course for c-quarks and other quarks

Back to Back configuration

- Jets in different hemispheres of (a priori) symmetric detector
- Jets maximally separated from each other
- Starting point for all correlation studies at LEP/SLC
 - => Safe ground to resume corresponding studies for Linear Collider

Measuring the b-tagging efficiency

- To start with we reproduce LEP/SLD (i.e. Eur.Phys.J. C10 (1999) 415-442)
- We compare single vs double tagged topologies.
 - fH = fraction of events in which we had at least one hemisphere b-tagged
 - fE = fraction of events in which we both hemispheres b-tagged

Jet correlations

Correlation function used by SLC: arxiv:0503005

$$C = \sum_{i} \epsilon(\cos \theta_i) \cdot \epsilon(-\cos \theta_i) f(\cos \theta_i) / \overline{\epsilon}^2$$

Correlation function used by DELPHI Eur.Phys.J. C10 (1999) 415-442

$$C = \sum_{i} \epsilon(\cos \theta_{i}) \cdot \epsilon(-\cos \theta_{i}) f(\cos \theta_{i}) / \overline{\epsilon}^{2} \qquad \rho_{\theta} = \frac{2 \int_{0}^{z_{max}} dz f(z) \epsilon_{b}(z) \cdot \epsilon_{b}(-z)}{\left(\int_{-z_{max}}^{z_{max}} dz f(z) \epsilon_{b}(z)\right)^{2}} - 1 \quad , \ z = \cos \theta.$$

- It is easy to see that both functions are completely equivalent
- Correlation functions measure inhomogeneities in the detector
- Procedure exploits that the value of the test variable is correlated between detector hemispheres
 - i.e. One jet at $\cos\theta$ means the other at $-\cos\theta$

Jet correlations – Quick Review LEP/SLC

	LEP	SLD	
	Eur.Phys.J. C10 (1999) 415-442	Phys.Rev. D71 (2005) 112004	
S	29.5 ± 0.18 % (data)	62.01 ± 0.24 % (data)	
& _b	28.2 % (MC)	61.78 ± 0.03 % (MC)	
	3.4 ± 0.5 % (MC, analysis1)	0.6± 0.4 % (MC, analysis1)	
ρ	2.0 ± 0.3 % (MC, analysis2)	-0.02± 0.3 % (MC, analysis2)	
E _c	0.38 ± 0.03 % (MC)	1.19 ± 0.01 % (MC)	
E uds	0.052 ± 0.008 % (MC)	0.134 ± 0.003 % (MC)	

$$|\epsilon_b(data) - \epsilon_b(MC)|/\epsilon_b \approx 1\% !!$$
 while our goal is $\Delta \epsilon_b / \epsilon_b \approx 0.1\%$

- ρ plays a main role in the determination of Rb i.e. to correct ϵ_h for detector inhomogeneities
- Main sources of correlations
 - Angular correlations: beam spot shape (primary vertex determination!), loss of acceptance of the detector, detector inhomogeneities...
 - QCD effects: gluon emission that modifies the energy of both quarks.

LEP (large beam spot):
$$\rho \approx 2\% \rightarrow \Delta R_b \approx 0.2\%$$

SLC (smaller beam spot): $\rho < 1\% \rightarrow \Delta R_b \approx 0.07\%$
•ILD (tiny beam spot): $\rho \sim 0$?

b-tagging efficiency and correlation

• As a function of $cos\theta$, removing the c and uds components

• There is no angular dependence of the correlation factor below $cos\theta=0.9$

Applying the same procedure to charge tagging

- LEP & SLD were not able to fully exploit the double tagging potential:
 - Due to the smaller efficiency (w.r.t. ILC) and lack of statistics.
- ILC will also be able to exploit the double charge measurements to measure angular spectra.
- Extension of introduced procedure but now also the charge measurement (i.e. using the Vertex charge measurement).

- Observations:
 - About stable efficiency in central region (=full detector acceptance)
 - Small dependence on angle of correlation.

Current results

	LEP	SLD	ILC (only b-tag)	ILC (btag & charge)
	Eur.Phys.J. C10 (1999) 415-442	Phys.Rev. D71 (2005) 112004	MC (250fb-1 left + 250 fb-1 right)	MC (250fb-1 left + 250 fb-1 right)
ε _b	29.5 ± 0.18 % (data) 28.2 % (MC)	62.01 ± 0.24 % (data) 61.78 ± 0.03 % (MC)	77.94 ± 0.13 % (« data »)	58.55 ± 0.12 % (« data »)
ρ	3.4 ± 0.5 % (MC, analysis1) 2.0 ± 0.3 % (MC, analysis2)	0.6± 0.4 % (MC, analysis1) -0.02± 0.3 % (MC, analysis2)	0.2 ± 0.1 % (MC)	0.12 ± 0.1 % (MC)
E _c	0.38 ± 0.03 % (MC)	1.19 ± 0.01 % (MC)	2.158 ± 0.007 % (MC)	1.584 ± 0.007 % (MC)
E uds	0.052 ± 0.008 % (MC)	0.134 ± 0.003 % (MC)	0.216 ± 0.002 % (MC)	0.146 ± 0.001 % (MC)

Integrating for all angles smaller than cos(theta)=0.8

• ρ is very small!!

- Negligible angular dependence of the correlation factor.
- First look at QCD effects seem to be well under control due to the cuts applied against radiation

With 2000fb⁻¹, we can achieve the $\Delta \epsilon_{b} / \epsilon_{b} \sim 0.1\%$!!

The uncertainties associated to p will have minimal impact in the final observable

Towards the (overall) per-mille level?

$$\begin{array}{ll}
f_{H} \\
f_{E} \\
f_{E}
\end{array} = R_{\rm b} \cdot \epsilon_{\rm b} + R_{\rm c} \cdot \epsilon_{\rm c} + (1 - R_{\rm b} - R_{\rm c}) \cdot \epsilon_{\rm uds} \\
R_{\rm b} \cdot \epsilon_{\rm b}^{2} \cdot (1 + \rho) + R_{\rm c} \cdot \underline{\epsilon_{\rm c}^{2}} + (1 - R_{\rm b} - R_{\rm c}) \cdot \underline{\epsilon_{\rm uds}^{2}},
\end{array}$$

With standard b-tagging cuts, we get:

$$\varepsilon_{b}$$
=58.55+-0.06 % (MC)

ρ=0.15+-0.1 % (MC stats, similar than in SLD/LEP in which were dominant)

mistagging c's:

 ε_c =1.584+-0.007 % (MC stat, but $\Delta \varepsilon_c / \varepsilon_c$ syst ~1-10% if measured with MC)

See talk by A. Irles on ee->cc (shows at least that we start to control cc production)

mistagging uds's:

 ε_{uds} =0.153+-0.002 % (MC stat but the error associated to (g \rightarrow bb) is $\Delta \varepsilon_c / \varepsilon_c \sim 10\%$)

Excellent b-uds separation required

b/c-uds separation I

• Vertex momentum seems to be efficient cut against uds w/o sacrifying too much signal

b/c-uds separation II

Vertex tracks?

- Requiring at least 1 secondary vertex mostly suppresses all uds background.
- Requiring less than 2 secondary vertexes will kill 60% of the b-quark background.

A quick look a radiative return events

- Black = radiative
- Blue = non radiative

- Sizeable differences in event topology
- Events are more pushed towards detector limits of acceptance
- No monochromatic b energy peak

A quick look a radiative return events

- Present topologies:
 - Back to back jets, for $|\cos\theta| > 0.9$
 - Two forward jets "together" for $|\cos\theta| > 0.7$
 - One jet very forward and the other in the barrel.
- LEP/SLC Strategy cannot be applied for determination of efficiencies

Summary and outlook

- First steps towards systematic study of error sources for high precision heavy quark measurements
- Starting with reanimation of LEP/SLC Methods
 - Jet correlation one main source of uncertainties at LEP/SLC
 - Introduction of jet correlation parameter ρ
 - Methods rely on back-to-back topologies
 - ILD should think to use ρ as figure ot merit for detector optimisation
- Need to control flavor tagging/separation to the ulmost precision
 - Strategies proposed
- This is just the beginning on the quest to control systematics of the 1‰

Backup