

LCWS2019: International Workshop on Future Linear Colliders
-28 Oct-1 Nov 2019, Sendai (Japan)

Path to high-luminosity (HL) LHC

Phase 2 detector requirements

Challenges:

- high instant. luminosity $(5 7.5 \ 10^{34} \ cm^{-2}s^{-1})$
 - \rightarrow high pileup (140 200)
- high integrated luminosity (3 4 ab⁻¹)
 - → high irradiation

Requirement of the CMS Phase 2 upgrade:

- High trigger and readout rate
- high resolution 4D space+time (+ energy) detector
- detectors must resist to the high radiation levels and some have to be replaced in LS3

CMS Phase 2 upgrades

L1 Trigger – HLT - DAQ

track information at L1 at 40 MHz

latency 3.2 μ s -> 12.5 μ s

HLT input 100 kHz -> 750 kHz

output 1 kHz -> 7.5 kHz

Barrel EC Calorimeters

 ε rystal granularity read-out at 40 MHz 30 ps e/ γ resolution at 30 GeV

Muon system

DT & CSC FE/BE new read-out new GEM/RPC 1.6 < $|\eta|$ < 2.4 GEM coverage up to $|\eta|$ = 2.8

new Tracker

track-trigger at 40 MHz increased granularity

extended acc. to $|\eta| < 4$

new MIP Timing Detector

Barrel layer: crystal + SiPM

Endcap layer: $|\eta| < 3$

Low Gain Avalanche Diodes

30 ps TOF resolution

new Endcap Calorimeters

Si/W - Scint-SiPM/SS

4D shower topology: 30 ps TOF resolution

New Tracker

Outer Tracker: design driven to provide tracks ($p_T > 2-3$ GeV) at 40 MHz to the **L1 trigger** => each module consists of 2 closely spaced sensors (~mm)

- strip-strip (2S) modules: modules with 1016 strips (5 cm x 90 μ m)
- pixel-strip (PS) modules: modules with macro-pixel (1.5 mm x 100 μ m) on one side and 960 strip (2.4 cm x 100 μ m) on the other, tilted in Barrel (hermetic coverage with less modules and material)

- extended coverage up to $|\eta| < 4.0$
- 6x better granularity than current Phase 1 pixel:

2S module

Substantial reduction of the material budget

Pixel size: 25 x 100 μ m² or 50 x 50 μ m²,

Track performance

Track resolution vs η

improved resolution and extended η range

Track and fake efficiency vs p_T

- track reconstruction efficiency > 90% for p_T > 1 GeV
- fake rate < 2% (4%) at 140 (200) PU for p_T within 1-100 GeV
- improved tracking in jet core thanks to better tracker granularity: important for high p_T jets and boosted objects measurements.

Primary vertex and MET

INFN LISTITUTO NAZIONALE DI FISICA NUCLEA

Performance

Good Primary Vertex (PV) reconstruction efficiency:

- PV merging rate high for |Dz| < 300 μm
- linear dependence as a function of pileup

Improved MET reconstrution

- MET distribution with extended tracker
 - → the rate of DY events with misreconstructed MET significatly decreases with extended tracker.

Muon Upgrade

- Upgrades of the existing muon detectors
 - current detectors withstand HL-LHC radiation level
 - Upgrade electronics of DT, CSC and RPC to ensure longevity to cope with longevity and new trigger and readout requirements.
- Extension of the muon system coverage to benefit from the extension of the tracker, HGCAL & new L1 trigger features

Allow to maintain low threshold for physics and extend acceptance

• New GEM stations (GE1/1, GE2/1) and iRPC (RE3/1,RE4/1): improve reconstruction and triggering

in the current acceptance up to 2.4

• Six layers triple GEM (ME0): extension to η = 2.8

- Including all muon detector into the trigger
 - Better p_T resolution allows lower rate
 - Kalman filter approach in trigger hardware, to take into account the energy loss and multiple scattering
 - Capability to trigger on displaced Muons

Muon object performance

- Muon reconstruction/identification in general robust against Pileup
- Excellent muon reconstruction/identification efficiency and background rejection up to |η| < 2.9

Performance and physics impact

Many BSM searches and SM measurements benefit from extended tracker and muon acceptance

Standard tools to fight against

- Timing of calorimeter @ hardware level, effective to remove out-of-time pileup.
- PFCHS jets Charged Hadron Subtracted (CHS) -: charged particles from non-primary vertices (pileup) are removed before performing Particle Flow jet (PF) clustering.
 - relies on track-vertex association in space:
 optimal z-cut at ~1mm for track-vertex compatibility

PUPPI jet (PileUp Per Particle Identification jets):

each individual PF particle is weighted to account for the probability of coming from the leading vertex (LV) or pileup (PU) interactions

Pileup mitigation: precise timing

Collision vertices within a bunch crossing

Basic Idea: vertices merged in z might be separated in time

- better time resolution $\sigma_t \rightarrow$ better vertex separation
- Calorimeter Precision timing of showers
 - high-energy photons in ECAL Barrel
 - photons and high-energy hadrons in Endcap Calorimeter
- MTD: MIP Timing Detector: Precision timing of tracks

PU tracks incorrectly associated to primary vertex of interest

reduce pileup at HL-LHC ~ to current LHC levels

Barrel calorimeter

ECAL Barrel has to accommodate the Level-1 trigger requirements on latency and rate, provide more precise timing resolution, and mitigate the increasing noise from the photodetectors.

- PbWO₄ crystal granularity readout (Avalanche PhotoDiodes) at 40 MHz in high pileup conditions
- replace front-end electronics:
 - 160 MHz sampling against spikes (due to hadron interactions within APD volume),
 - 30 ps resolution for 30 GeV e/ γ
 - all cells available at Level 1 trigger
- operate from 18° to 9°C to mitigate APD aging

CMS PbWO₂ Crystals+ APDs + new FE

High Granularity endcap Calorimeter

- 4D shower topology with timing resolution ~30 ps for few GeV γ and hadrons above 2 GeV Pt
 - electromagnetic calo: 28 layers Silicon/W-Pb (26 X₀ 1.7 λ)
 - hadronic calo: 8 layers Si + 16 mixed Si-Scintillators tiles within stainless steel absorber (9 λ)

Photons performance

CMS-TDR-015

CMS Phase-2 Simulation

ml<1.4, unconverted photons, E3x3

E3X3

supercluseter

using MVA corrections

HL-LHC will provide x10 larger dataset for Higgs physics

Energy resolution, $\sigma_{
m eff}({
m E})/{
m E}$

small impact of ageing

 10^{2} **Photon reconstruction**

With full optimisation (MVA corrections), we expect to achieve similar $H \rightarrow \gamma\gamma$ resolutions for Phase-2 and 1000fb-1 as was obtained in Run 2

29/10/19

Tau and Jet performance

A. Colaleo – INFN Bari - LCWS2019

 Comparable τ misidentification rates for the 140 and 200 pileup environments, with only a moderate relative drop of about 10% in efficiency

- Jet p_T resolution <30% for jet with p_T > 20 GeV (PU140)
- Jet p_T resolution uniform in η compared to the Phase-I endcap calorimeter projection (aged+PU140)

MIP Timing Detector

30 ps time of flight resolution for charged particles within $|\eta| < 3.0$

- Barrel Timing Layer (~1 m radius) within Tracker Support Tube:
 - thin crystals (Lyso) 57x3x2.4-3.75 mm³ + SiPM 4x4 mm², ~250k channel
- Endcap Timing Layer in front of High Granularity Calorimeter
 - Si sensors with low gain (LGAD) 1.3x1.3 mm² pads, ~250k channels

B-Tagging with timing

Precision timing rejects spurious secondary vertices

- Significant improvements for working points at constant signal efficiency or background rejection
- Removes pileup-density dependence in b-tagging and 3-5% efficiency improvement

Lepton Isolation with Timing

- Precision timing significantly improves charged lepton isolation in both barrel and endcap
 - Prompt muon vs misidentified muons or non-prompt muon candidates, originating mostly from semileptonic decays of heavyflavour hadrons in simulated tt events.
- Reduces dependence on pileup density:
 - improvement in background rejection for constant signal efficiency both for muons and taus.

0.85

0.9

0.95

Prompt efficiency

Conclusion

- In coming years LHC will increase its luminosity. For proton proton
 - Goal is to accumulate the integrated luminosity of ≥ 3,000 fb⁻¹
 - Expect 140~200 pileup interactions per beam bunch crossing
- Main challenge in the detector upgrade is mitigation of large number of pileup interactions and keep the current performance:
 - Increased detector granularity and acceptance in η
 - Precise timing measurement
 - Trigger: more bandwidht, new functions and algorithms
- Several Technical Proposals and Technical Design Reports already accepted by LHCC
 - 2015: Phase 2 CMS TP and scope documents
 - 2018: TDRs for Tracker, Muon, Barrel Calorimeters and Endcap calorimeters approved
 - + interim TDRs for L1 triggers and DAQ
 - 2019 TDR for MIP Timing Detectors
 - CERN yellows report released
- R&D is advanced phase, the schedule is tight, the construction phase is started: we proceed full steam to get ready for this new challenge

Backup

A new realm for triggering: full detector view@L1

Improved triggering with full detector view:

- Trigger decision include calorimeter & tracker information.
 Tracking requires larger latency
 - L1Rate 750 kHz & 12.5 us latency
- Sophisticated clustering algorithms deployed in the detector back-end electronics.
- Bandwidth: Phase II ~ 50 Tb/s (1.8 in Phase I)

Match the performance of HLT/ Offline algorithms in the correlator:

- Particle Flow @ Level-1 trigger hardware
 - tracking information and global detector description to provide the prompt physics object at Level-1
- Pile-Up-Per-Particle-Identification (PUPPI) on PF candidates @ Level-1
 - To greatly mitigate PU effects at Level-1

Muons trigger

Stand-alone

- Exploitation of full timining resolution thanks to new DT/RPC electronic
- Improvements in ε and rate in endcap thanks to new chambers
- Development of Kalman filter approach in trigger hardware,
 to account for the energy loss and multiple scattering

Track-trigger

- L1 Muon trigger provided candidates with high purity, but too high rat e due to the poor p_T accuracy
- Matching with L1 Tracks provides a major improvements
 - Resolution 10% → 1% with Efficiency > 95%
 - Factor 6 to 10 of rate reduction for SingleMu p_T > 20 GeV

(CMS-TDR-16)

Trigger on highly displaced muons

Trigger on heavy stable charged particle

Electrons, Photons, taus trigger INFN

Electron and photons stand alone trigger must provide high efficiency, especially for high-p_t object:

- the digitised response of every crystal of the ECAL barrel will provide crystal level energy measurement
 - Improved position resolution of the EM clustering algorithm (similar to offline)
- New trigger design improve rates, efficiency for EGM clusters is kept up to ~99% at plateau

Identification of τ_h is challenging and usage of tracking becomes crucial to reduce the trigger rate:

- The Phase-1 algorithms depoyed at L1 to select τ_h candidates from isolated Calo Clusters
- High p_T L1 tracks matched to Phase-1 L1 Taus (Phase-2 L1 TauTk)
- L1 track-based isolation requirement is applied (Phase--2 L1 TauTkIso) to reduce the rate

Jets, H_T, MH_T, E_tmiss trigger

Multi-object triggers very sensitive to PU

- reduce the PU dependency requiring jets from same vertex
- Tracking based ETmiss: vectorial sum of all the tracks pT that come from the PV (z0 consistent with PV within ~1 cm)

Comparing HT trigger performance from PF-jets and Track--based jets:

- PF+PUPPI more robust against fakes than track--only observables
- higher signal efficiency, lower rates, lower thresholds

Physics highlights

Investigating the Higgs sector:

- O(%) couplings to fermions & bosons
- Rare decays H—>μμ
- **Double Higgs**
- VBF and HW, HZ production modes
- Triple-gauge coupling, quartic-gauge coupling

Standard Model Physics:

- Rare B_{s,d} decays
- **Vector Boson Scattering (VBS)**

SUSY and beyond:

- Scan to level of multi TeV
- Dark matter: mono-object (jet, vector boson etc)

Physics impact

3000 fb⁻¹ (13 TeV) CMS Projection Η⊸γγ S2 (80% Vertex Efficiency) fiducial volume : $p_{T}^{gen}(\gamma_{1(2)}) > \frac{1}{3}(\frac{1}{4}) \text{ m}$ $h_{1.2}^{gen} (\gamma_{1.2}) I < 2.5$ S2+ Calorimeter timing $Iso_{B=0.3}^{gen} (\gamma_{1.3}) < 10 \text{ GeV}$ S2+ No timing arbitrary units S/(S+B)-weighted $\sigma_{c''}^{S2}$ =1.71 GeV signal models 120 125 $\rm m_{_{\gamma\gamma}}$ (GeV) $\rm \sigma_{_{\rm off}}$ relative to S2

Performance in Run2

signal with Phase 2 photon resolution

- Combined HH signal significance of 2.6 σ (with HH \rightarrow b δ $\gamma\gamma$ as the best sensitivity channel)
- Unique capability to match photon time to vertex time + position

CMS ECAL is non-pointing, but has photon timing capability

50% of events additionally require MIP timing to find correct vertex

Identifies photon vertex: improves di-photon mass resolution by 25% and also H(γγ) signal significance

BTL Geometry

- 40mm-thin cylinder, integrated in tracker support tube
 - sharing services and schedule with tracker detector
 - cannot be removed or serviced during entire lifetime of HL-LHC
- To cope with schedule/accessibility/ costs, use sensor technologies wellestablished and experienced by CMS
 - array of LYSO:Ce crystal bars (57 x 3 x 2.4-3.75 mm³) oriented along φ direction
 - readout by **2 SiPMs** (one per bar side)

Expand reach for Long-lived

- particlesVertex timing enhances LLP program
- For topologies involving secondary vertices, MTD provides new capability to reconstruct the

mass of long-lived NEUTRAL particles

(b)
$$\chi_1^0 o G + Z$$
 Peaking Variable

600

800

200

400

1000

 $m_{\chi_{2}^{0}}$ (GeV)