

Construct Deep Jet Clustering

Masakazu Kurata

LCWS2019

10/29/2019

Introduction Jet clustering is one of the main key to obtain better physics results

- Physics results are strongly limited by mis-clustering
- To obtain correct jets leads to improve the mass resolution of the resonances

Present jet clustering is far from good tool for reconstructing jets

• e.g. Higgs self-coupling@500GeV(ZHH): ~40% improvement if perfect!

Staging: even at 250GeV, clustering is very important

Separation of ZH/ZZ/WW in hadronic events

Use CNN for automatic colorization

- For jet clustering, we need the global and local information for each event
 - Global: Where is the large energy located?
 - Local: Correlation between neighbors or large energy area?
- Using Convolutional Neural Network(CNN), we will extract both features
 - Encorder-Decorder type CNN is used (calls as u-network, mention later)
- Clustering is equivalent to "colorize" each particle in the same cluster
 - Grey scale ⇒ color
 - So, Automatic colorization is worth trying for jet clustering

Trial

Using a certain map(s) of each event, estimate color of each track

Output(64×64 pixel figure)

Do not consider color-singlet state

 $\frac{ln}{ln}$ put (64 × 64 pixel figure) e.g.) energy map

Network Architechture

Final convolution

- Integrate feature at any stage(hypercolumn)
- Output for clustering

Encorder

output

79×79

- Extract global & higher order feature
- Downsample to make network robust for distortion & shift effect
- Lost position information

Decorder

- Expand obtained feature to local
- Upsample to recover position information
- Merge encoder nodes to get precise position information

Multiple input

Several variables are used for input image

- Location map
- Charge map
- Dosig map
- Zosig map
- Ecal map
- Hcal map
- Energy:use different way

Training goes to quicker convergence than that of energy only

Not guaranteed good input variable set: need much time to check...

• dE/dx??

Create answer

Supervised learning - Create "answer" jets: perfect Durham jet clustering

So far, do not consider color singlet state: number of jets is 6 ZHH→(qq)(bb)(bb)→6jets

Data Cleansing1
So far, power of expression is not enough to assign jets perfectly

- Overlapping of jets creates very complicated boundary shape
- Very complicate separation is difficult: it looks "noise" for CNN

Using Durham jet clustering, bundle particles into some

minijets

10% mass difference between perfect and cleansed data is allowed

Bundling particles into as small number of minijets as possible

Num. of minijets is different event by event

Effect on clusters

- Particles in jet can be gathered same region
- Clearer boundary between jets

Data Cleansing2

Perfect Durham clustering is not always the best clustering into

jets for CNN

By using the preliminary training weights, clustering into 2 jets is performed

Clustering particles to make loss function minimum

Iterate a few times

- About output
 Output is obtained as the probability of assignment to each color
- Color with max probability is assigned output

$$\sum_{i} y_i = 1.0$$

$$color = \max y_i$$

status

- Use ZHH→(qq)(bb)(bb): 6jets clustering
 - q: uds or c
- Use 112000 events for training
- Don't consider color singlet state for network training
 - But, as mentioned, use the freedom of color singlet state: Data cleansing for better performance
- Input: 6 images output: 6 images
- Structure: mentioned above(resnet + hyper column)

Over fit check

- Performance comparison
 - Using cross entropy loss(small is better performance)

$$L = -\frac{1}{N} \sum_{jet} \sum_{track} f(\frac{E_{track}}{E_{jet}}) \cdot \text{Log}(y_{track})$$

- Using energy, importance is defined
 - Larger energy particles should be assigned more correctly than lower energy particles
 - So, larger energy particles have larger importance on loss function
- Loss function will be almost same value if no over fitting:

Cross-entropy loss	Train	Test
L	0.329	0.355

- Almost same over fitting will be small
- More training necessary...
- Should be lower for better performance

Examples

Using test samples

- Need to investigate mis-colorize
- Split cluster(Gluon splitting?) is difficult to colorize...
- Of course some events are very difficult to colorize correctly...

- Let's go to check mass reconstruction
 - Check how much far from Durham
- Assume color information is known
 - Jet pairing is solved

Mass distribution

- 1500 evts. test samples
- Reach Durham level
 - Still far from limit...

Summary and Outlook

Mass resolution reaches Durham level

Input data quality is very important to final results

- Suppressing "noise" leads to good result
- So, have to explore better input data correction
- Of course, Higgs & Z mass resolution should be kept well

Continue to investigate:

- Gluon splitting
- Performance is going better, need to explore better performance!
- Next steps:
 - Check bias of uds & c jets how about (bb)(bb) case?
 - Bias of process Other process??
 - Lead to better separation between signal & backgrounds?

backups

Basics: convolution

- Convolution: Apply the filters to extract the feature
 - Sum of the product of each pixel and filter weights:

$$y_{kl} = \sum_{i,j} w_{ij} \cdot x_{(k+i)(l+j)} (+b)$$

Slide filters over all the pixels

1 _{×1}	1 _{×0}	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4	

Image

Convolved Feature

- Filters are parameters: CNN can obtain them automatically
- After the convolutional operation, apply non-linear transform

$$z_{kl} = \sigma(y_{kl})$$

"Non-linear" is important to get good expression

• Stack these operations

Basics: Residual convolution

- Stream is divided into 2 paths:
 - Path with convolution
 - Path without any operation

Sum up these 2 path in downstream

Can learn "Residuals" of previous layer features

- Can construct very deep network
 - 100 layers can be constructed
 - Deeper will be better performance

Basics: Transposed convolution

Reverse operation of convolution

- After adding padding, do convolution
- Use for upsampling

