Multiple production of weak bosons in e^+e^- collisions

Wolfgang Kilian

University of Siegen and CLICdp

LCWS 2019 Sendai, October/November 2019

Indirect Search for BSM

Focus of current and collider analyses and studies:

Higgs interactions

= trilinear interactions of H with heavy quarks, heavy leptons, massive bosons

- Top-quark threshold, top-quark continuuum, $t\bar{t}H$
 - = trilinear interactions of $t\bar{t}$
- Global EW fit
 - = all trilinear interactions of the SM

Standard Framework: truncated SMEFT (D=6)

This talk:

An overview of the phenomenology of multi-boson production

 \Rightarrow trilinear and quartic interactions and beyond

The Threshold Range

Multi-boson physics: Experimental Prospects

LC case

Final states (6 fermions, 8 fermions) can be studied trigger-less and fully exclusive in all observables.

Main issues:

- Separate Z from W (and H) in fully hadronic decay mode
- Jet charge $(W^+ \text{ vs } W^-)$
- Combinatorics
- Invisible decays (minor fraction)

In any case:

Low Rates in clean environment

 \Rightarrow Many measurements will be statistics-dominated.

Multi-boson physics: SM Theory

Calculation: Baseline

All parameters are known, so all cross sections and distributions can be accurately computed and compared to experiment (in principle)

SM is weakly interacting

 $\Rightarrow\,$ Add gauge-boson, Higgs, and contact terms coherently:

Multi-boson physics: Standard BSM Theory

- Framework for deviations: SMEFT (D=6 truncated)
 - \Rightarrow Gauge cancellations broken in a controlled way:

EFT parameters from global fit (decays / diboson @LHC @LC) ⇒ All quartic couplings predicted by SMEFT?

Combined Fit?

Triboson W^+W^-Z vs Diboson W^+W^- : D = 6 coupling c_W σ_n interference (dashed) 10^{5} quadratic (dots) $e^+e^- \rightarrow X$ 10^{4} WWZ1000 WW100 WW WZ10 – <mark>И</mark> 1_{0} 1000 2000 3000 4000 \sqrt{s} [TeV]

\Rightarrow Improved fit for D = 6 SMEFT model

Multi-boson physics: Model-Independent Analysis

- SMEFT = calculational tool
 - gauge invariance controls impact of lower-order data on higher-order processes and renormalization of loop corrections
 - \Rightarrow Power counting in terms of E^2/Λ^2 , iterative: $D = 6, 8, 10, \dots$
- Problems: proliferation of parameters, varying level of precision on basis, unitarity in production processes
- ⇒ Truncated SMEFT is a model with limitations and shortcomings which becomes unsuitable for higher-order processes

Multi-boson physics: Model-Independent Analysis

- ► SMEFT = calculational tool
 - gauge invariance controls impact of lower-order data on higher-order processes and renormalization of loop corrections
 - \Rightarrow Power counting in terms of E^2/Λ^2 , iterative: $D = 6, 8, 10, \dots$

- \Rightarrow Truncated SMEFT is a model with limitations and shortcomings which becomes unsuitable for higher-order processes
- Multiboson Analysis beyond SMEFT:
 - ⇒ Observables = process-specific energy-dependent form factors

after fitting and subtracting D = 6 (lower-order) terms

W. Kilian (Uni Siegen / CLICdp)

Multiboson in e^+e^-

Processes at high energy

Some Observations:

- WWZ important
- WWH vs ZH
- Neutral final states suppressed

Processes at high energy

Some Observations:

- WWZ important
- WWH vs ZH
- Neutral final states suppressed
- Quartic VB production

Processes at high energy

Some Observations:

- WWZ important
- WWH vs ZH
- Neutral final states suppressed
- Quartic VB production
- 6j, 8j, 10j
 as background
 and signal

The Rise of VBS

arXiv:1812.02093

Unitarity Limits?

Unitarity

- ► Diboson and quasi-elastic VBS: weak → strong
 - \Rightarrow Interference (linear in SMEFT)
 - \Rightarrow Limit \sim factor 10 (elastic rescattering)
- Multiboson and inelastic VBS: weak → strong
 - \Rightarrow Quadratic terms and beyond
 - \Rightarrow Limit \sim factor 10^x (inelastic \lesssim elastic)
 - \Rightarrow Resonances / strongly interacting Higgs (portal) sector

Perturbative operator expansion \Rightarrow form-factor parameterization

Fun with Asymptotics

Gauge invariance!

Fun with Asymptotics

Gauge invariance!

Gauge invariance?

Fun with Asymptotics

Gauge invariance?

Hee coupling - do we really know the Higgs mechanism that shapes our universe?

Multi-Boson physics will play an important role at LC > 300 GeV
 ... possibly, the dominant source of information at the highest
 energies

- Multi-Boson physics will play an important role at LC > 300 GeV

 possibly, the dominant source of information at the highest
 energies
- 2. Adds to precision measurements within truncated SMEFT but should rather be described without theory assumptions

- 1. Multi-Boson physics will play an important role at LC > 300 GeV possibly, the dominant source of information at the highest energies
- 2. Adds to precision measurements within truncated SMEFT but should rather be described without theory assumptions
- Potential for direct observation of new physics (EW, Higgs)
 ... any EW-BSM effect will likely affect some multiboson processes (enhancement by orders of magnitude is allowed)

Read More:

- The CLIC Potential for New Physics (CERN Yellow Report, arXiv:1812.02093)
- Brass, Kilian, Reuter, et.al.: W.I.P.