
The Simulation à Grande Vitesse (SGV) Fast
Simulation program

Mikael Berggren1

1DESY, Hamburg

LCWS, Sendai, Japan , Oct 2019

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 1 / 20

Outline

1 The need for fast simulation

2 Fast simulation for ILC

3 SGV
Tracker simulation

Comparison with fullsim
Calorimeter simulation

4 Technicalities

5 Outlook and Summary

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 2 / 20

The need for fast simulation

The need for fast simulation

We have very good full simulation now.
So why bother about fast simulation ?
Answer:

R. Heuer at LCWS 2011: We need to update the physics case
continuously.
Light-weight: run anywhere, no need to read tons of manuals and
doxygen pages.
Anyhow, experience from both LOI and DBD showed that for
physics, the FastSim studies often were good enough, if the
FastSim has enough detail.

But most of all:

Fast simulation is Fast !

So...
Why do we need speed ?

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 3 / 20

The need for fast simulation

The need for fast simulation

We have very good full simulation now.
So why bother about fast simulation ?
Answer:

R. Heuer at LCWS 2011: We need to update the physics case
continuously.
Light-weight: run anywhere, no need to read tons of manuals and
doxygen pages.
Anyhow, experience from both LOI and DBD showed that for
physics, the FastSim studies often were good enough, if the
FastSim has enough detail.

But most of all:

Fast simulation is Fast !

So...
Why do we need speed ?

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 3 / 20

The need for fast simulation

The need for fast simulation

We have very good full simulation now.
So why bother about fast simulation ?
Answer:

R. Heuer at LCWS 2011: We need to update the physics case
continuously.
Light-weight: run anywhere, no need to read tons of manuals and
doxygen pages.
Anyhow, experience from both LOI and DBD showed that for
physics, the FastSim studies often were good enough, if the
FastSim has enough detail.

But most of all:

Fast simulation is Fast !

So...
Why do we need speed ?

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 3 / 20

The need for fast simulation

The need for fast simulation

We have very good full simulation now.
So why bother about fast simulation ?
Answer:

R. Heuer at LCWS 2011: We need to update the physics case
continuously.
Light-weight: run anywhere, no need to read tons of manuals and
doxygen pages.
Anyhow, experience from both LOI and DBD showed that for
physics, the FastSim studies often were good enough, if the
FastSim has enough detail.

But most of all:

Fast simulation is Fast !

So...
Why do we need speed ?

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 3 / 20

The need for fast simulation

The need for fast simulation

We have very good full simulation now.
So why bother about fast simulation ?
Answer:

R. Heuer at LCWS 2011: We need to update the physics case
continuously.
Light-weight: run anywhere, no need to read tons of manuals and
doxygen pages.
Anyhow, experience from both LOI and DBD showed that for
physics, the FastSim studies often were good enough, if the
FastSim has enough detail.

But most of all:

Fast simulation is Fast !

So...
Why do we need speed ?

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 3 / 20

The need for fast simulation

γγ background

Total cross-section for e+e− → γγe+e− → qq̄e+e−: 35 nb (PYTHIA)∫
Ldt = 500 fb−1 → 18 ?109 events are expected.

10 ms to generate one event.
10 ms to fastsim (SGV) one event.

108 s of CPU time is needed, ie more than 3 years. But:This goes to
3000 years with full simulation.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 4 / 20

The need for fast simulation

γγ background

Total cross-section for e+e− → γγe+e− → qq̄e+e−: 35 nb (PYTHIA)∫
Ldt = 500 fb−1 → 18 ?109 events are expected.

10 ms to generate one event.
10 ms to fastsim (SGV) one event.

108 s of CPU time is needed, ie more than 3 years. But:This goes to
3000 years with full simulation.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 4 / 20

The need for fast simulation

γγ background

Total cross-section for e+e− → γγe+e− → qq̄e+e−: 35 nb (PYTHIA)∫
Ldt = 500 fb−1 → 18 ?109 events are expected.

10 ms to generate one event.
10 ms to fastsim (SGV) one event.

108 s of CPU time is needed, ie more than 3 years. But:This goes to
3000 years with full simulation.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 4 / 20

The need for fast simulation

SUSY parameter scans

Simple example:
MSUGRA: 4 parameters + sign of µ
Scan each in eg. 20 steps
Eg. 5000 events per point (modest requirement: in sps1a’ almost
1 million SUSY events are expected for 500 fb−1 !)
= 204 × 2 × 5000 = 1.6× 109 events to generate...

Slower to generate and simulate than γγ events

Also here: CPU millenniums with full simulation

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 5 / 20

The need for fast simulation

SUSY parameter scans

Simple example:
MSUGRA: 4 parameters + sign of µ
Scan each in eg. 20 steps
Eg. 5000 events per point (modest requirement: in sps1a’ almost
1 million SUSY events are expected for 500 fb−1 !)
= 204 × 2 × 5000 = 1.6× 109 events to generate...

Slower to generate and simulate than γγ events

Also here: CPU millenniums with full simulation

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 5 / 20

Fast simulation for ILC

Fast simulation types, and the choice for ILC

Different types, with increasing level of sophistication:
4-vector smearing.
Parametric. Eg.: Delphes
Covariance matrix machines. Eg.: SGV

Common for all:
Detector simulation time ≈ time to generate event by an efficient
generator like PYTHIA 6

For ILC:
Only Covariance matrix machines have sufficient detail. Here, I’ll cover
“la Simulation à Grande Vitesse”, SGV.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 6 / 20

Fast simulation for ILC

Fast simulation types, and the choice for ILC

Different types, with increasing level of sophistication:
4-vector smearing.
Parametric. Eg.: Delphes
Covariance matrix machines. Eg.: SGV

Common for all:
Detector simulation time ≈ time to generate event by an efficient
generator like PYTHIA 6

For ILC:
Only Covariance matrix machines have sufficient detail. Here, I’ll cover
“la Simulation à Grande Vitesse”, SGV.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 6 / 20

SGV Tracker simulation

SGV: How tracking works
SGV is a machine to calculate covariance matrices

Tracking: Follow track-helix through
the detector.

Calculate cov. mat. at perigee,
including material,
measurement errors and
extrapolation. NB: this is
exactly what Your Kalman filter
does!
Smear perigee parameters
(Choleski decomposition:
takes all correlations into
account)
Helix parameters exactly
calculated, errors with one
approximation: helix moved to
(0,0,0) for this.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 7 / 20

SGV Tracker simulation

SGV: How tracking works
SGV is a machine to calculate covariance matrices

Tracking: Follow track-helix through
the detector.

Calculate cov. mat. at perigee,
including material,
measurement errors and
extrapolation. NB: this is
exactly what Your Kalman filter
does!
Smear perigee parameters
(Choleski decomposition:
takes all correlations into
account)
Helix parameters exactly
calculated, errors with one
approximation: helix moved to
(0,0,0) for this.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 7 / 20

SGV Tracker simulation

SGV: How tracking works
SGV is a machine to calculate covariance matrices

Tracking: Follow track-helix through
the detector.

Calculate cov. mat. at perigee,
including material,
measurement errors and
extrapolation. NB: this is
exactly what Your Kalman filter
does!
Smear perigee parameters
(Choleski decomposition:
takes all correlations into
account)
Helix parameters exactly
calculated, errors with one
approximation: helix moved to
(0,0,0) for this.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 7 / 20

SGV Tracker simulation

SGV: How tracking works
SGV is a machine to calculate covariance matrices

Tracking: Follow track-helix through
the detector.

Calculate cov. mat. at perigee,
including material,
measurement errors and
extrapolation. NB: this is
exactly what Your Kalman filter
does!
Smear perigee parameters
(Choleski decomposition:
takes all correlations into
account)
Helix parameters exactly
calculated, errors with one
approximation: helix moved to
(0,0,0) for this.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 7 / 20

SGV Tracker simulation

SGV and FullSim LDC/ILD: momentum resolution

Lines: SGV, dots: Mokka+Marlin

 [GeV/c]
T

p
1 10 210

−
1

 [
G

e
V

/c
]

T
1
/p

σ

−510

−410

−310

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 8 / 20

SGV Tracker simulation

SGV and FullSim LDC/ILD: ip resolution vs P

Lines: SGV, dots: Mokka+Marlin

p [GeV/c]

σ
ip

 [
cm

]

SGV
FullSim
FullSim, fixed

10
-4

10
-3

10
-2

10
-1

1 10 10
2

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 9 / 20

SGV Tracker simulation

SGV: How the rest works
SGV is a machine to calculate covariance matrices

Calorimeters: Follow
particle to intersection with
calorimeters.

Response type: MIP, EM or hadronic
shower, below threshold, etc.
Simulate single particle response
from parameters.
Easy to plug in more sophisticated
shower-simulation. Next slides.

Other stuff:
EM-interactions in detector material
simulated
Plug-ins for particle identification,
track-finding efficiencies,...
Information on hit-patterns accessible
to analysis.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 10 / 20

SGV Tracker simulation

SGV: How the rest works
SGV is a machine to calculate covariance matrices

Calorimeters: Follow
particle to intersection with
calorimeters.

Response type: MIP, EM or hadronic
shower, below threshold, etc.
Simulate single particle response
from parameters.
Easy to plug in more sophisticated
shower-simulation. Next slides.

Other stuff:
EM-interactions in detector material
simulated
Plug-ins for particle identification,
track-finding efficiencies,...
Information on hit-patterns accessible
to analysis.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 10 / 20

SGV Tracker simulation

Something about vertex fits and all that

User data, delivered in Module-global arrays:
Extended 4-vectors .
Track helix parameters with correlations.
Calorimetric clusters.
When relevant: true values.
Auxiliary information on particle history, detector-elements used etc.
Event-global variables.

User Analysis tasks :
Jet-finding.
Event-shapes.
Primary and secondary vertex fitting.
Impact parameters.

Can be calculated by routines, included in SGV. Access routines
give an easy interface to the detector geometry.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 11 / 20

SGV Tracker simulation

Something about vertex fits and all that

User data, delivered in Module-global arrays:
Extended 4-vectors .
Track helix parameters with correlations.
Calorimetric clusters.
When relevant: true values.
Auxiliary information on particle history, detector-elements used etc.
Event-global variables.

User Analysis tasks :
Jet-finding.
Event-shapes.
Primary and secondary vertex fitting.
Impact parameters.

Can be calculated by routines, included in SGV. Access routines
give an easy interface to the detector geometry.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 11 / 20

SGV Calorimeter simulation

Calorimeter simulation

The issues:
Clearly: Random E, shower position, shower shape.
But also association errors:

Clusters might merge,split, or get wrongly associated to tracks

Will depend on Energy, on distance to neighbour, on EM or
hadronic, on Barrel or forward, ...
Consequences:

If a (part of) a neutral cluster associated to track→ Energy is lost.
If a (part of) a charged cluster not associated to any track→
Energy is double-counted.

Parametrisation:
Look at how PFA on FullSim has associated tracks and clusters:
link MCParticle -> Track and/or true cluster -> Seen cluster.
Found that sets of p.d.f.’s with 28 parameters × 4 cases (em/had ×
double-counting/loss) can do this.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 12 / 20

SGV Calorimeter simulation

Calorimeter simulation

The issues:
Clearly: Random E, shower position, shower shape.
But also association errors:

Clusters might merge,split, or get wrongly associated to tracks

Will depend on Energy, on distance to neighbour, on EM or
hadronic, on Barrel or forward, ...
Consequences:

If a (part of) a neutral cluster associated to track→ Energy is lost.
If a (part of) a charged cluster not associated to any track→
Energy is double-counted.

Parametrisation:
Look at how PFA on FullSim has associated tracks and clusters:
link MCParticle -> Track and/or true cluster -> Seen cluster.
Found that sets of p.d.f.’s with 28 parameters × 4 cases (em/had ×
double-counting/loss) can do this.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 12 / 20

SGV Calorimeter simulation

Calorimeter simulation

The issues:
Clearly: Random E, shower position, shower shape.
But also association errors:

Clusters might merge,split, or get wrongly associated to tracks

Will depend on Energy, on distance to neighbour, on EM or
hadronic, on Barrel or forward, ...
Consequences:

If a (part of) a neutral cluster associated to track→ Energy is lost.
If a (part of) a charged cluster not associated to any track→
Energy is double-counted.

Parametrisation:
Look at how PFA on FullSim has associated tracks and clusters:
link MCParticle -> Track and/or true cluster -> Seen cluster.
Found that sets of p.d.f.’s with 28 parameters × 4 cases (em/had ×
double-counting/loss) can do this.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 12 / 20

SGV Calorimeter simulation

Calorimeter simulation

The issues:
Clearly: Random E, shower position, shower shape.
But also association errors:

Clusters might merge,split, or get wrongly associated to tracks

Will depend on Energy, on distance to neighbour, on EM or
hadronic, on Barrel or forward, ...
Consequences:

If a (part of) a neutral cluster associated to track→ Energy is lost.
If a (part of) a charged cluster not associated to any track→
Energy is double-counted.

Parametrisation:
Look at how PFA on FullSim has associated tracks and clusters:
link MCParticle -> Track and/or true cluster -> Seen cluster.
Found that sets of p.d.f.’s with 28 parameters × 4 cases (em/had ×
double-counting/loss) can do this.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 12 / 20

SGV Calorimeter simulation

Proof of principle of the parametrisation

Feed exactly the same physics events through FullSim or SGV.

Overall:
Total seen energy

e+e− →ZZ → four jets:
Reconstructed MZ at
different stages in FullSim.
Seen Reconstructed MZ ,
FullSim and SGV.
Jet-Energy resoulution

Zhh at 1 TeV:
Vissible E
Higgs Mass
b-tag

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 13 / 20

SGV Calorimeter simulation

Proof of principle of the parametrisation

Feed exactly the same physics events through FullSim or SGV.

Overall:
Total seen energy

e+e− →ZZ → four jets:
Reconstructed MZ at
different stages in FullSim.
Seen Reconstructed MZ ,
FullSim and SGV.
Jet-Energy resoulution

Zhh at 1 TeV:
Vissible E
Higgs Mass
b-tag

E
seen

 (GeV)

FullSim

SGV

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 13 / 20

SGV Calorimeter simulation

Proof of principle of the parametrisation

Feed exactly the same physics events through FullSim or SGV.

Overall:
Total seen energy

e+e− →ZZ → four jets:
Reconstructed MZ at
different stages in FullSim.
Seen Reconstructed MZ ,
FullSim and SGV.
Jet-Energy resoulution

Zhh at 1 TeV:
Vissible E
Higgs Mass
b-tag

E
seen

 (GeV)

FullSim

SGV

1

10

10
2

10
3

0 100 200 300 400 500 600

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 13 / 20

SGV Calorimeter simulation

Proof of principle of the parametrisation

Feed exactly the same physics events through FullSim or SGV.

Overall:
Total seen energy

e+e− →ZZ → four jets:
Reconstructed MZ at
different stages in FullSim.
Seen Reconstructed MZ ,
FullSim and SGV.
Jet-Energy resoulution

Zhh at 1 TeV:
Vissible E
Higgs Mass
b-tag

M
Z
 (GeV)

True

True of all seen

Seen of all seen

Seen

0

200

400

600

800

1000

1200

80 85 90 95 100 105

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 13 / 20

SGV Calorimeter simulation

Proof of principle of the parametrisation

Feed exactly the same physics events through FullSim or SGV.

Overall:
Total seen energy

e+e− →ZZ → four jets:
Reconstructed MZ at
different stages in FullSim.
Seen Reconstructed MZ ,
FullSim and SGV.
Jet-Energy resoulution

Zhh at 1 TeV:
Vissible E
Higgs Mass
b-tag

0

100

200

300

400

500

600

700

800

900

50 60 70 80 90 100 110 120 130

M
Z
 (GeV)

FullSim

SGV

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 13 / 20

SGV Calorimeter simulation

Proof of principle of the parametrisation

Feed exactly the same physics events through FullSim or SGV.

Overall:
Total seen energy

e+e− →ZZ → four jets:
Reconstructed MZ at
different stages in FullSim.
Seen Reconstructed MZ ,
FullSim and SGV.
Jet-Energy resoulution

Zhh at 1 TeV:
Vissible E
Higgs Mass
b-tag

FullSim

SGV

E
jet

 (GeV)

∆
(E

)/
E

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 25 50 75 100 125 150 175 200 225 250

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 13 / 20

SGV Calorimeter simulation

Proof of principle of the parametrisation

Feed exactly the same physics events through FullSim or SGV.

Overall:
Total seen energy

e+e− →ZZ → four jets:
Reconstructed MZ at
different stages in FullSim.
Seen Reconstructed MZ ,
FullSim and SGV.
Jet-Energy resoulution

Zhh at 1 TeV:
Vissible E
Higgs Mass
b-tag

Visible Energy / GeV

100 200 300 400 500 600 700 800 900 1000 1100

N
o
rm

a
liz

e
d

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

SGV Simulation

DBD Simulation

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 13 / 20

SGV Calorimeter simulation

Proof of principle of the parametrisation

Feed exactly the same physics events through FullSim or SGV.

Overall:
Total seen energy

e+e− →ZZ → four jets:
Reconstructed MZ at
different stages in FullSim.
Seen Reconstructed MZ ,
FullSim and SGV.
Jet-Energy resoulution

Zhh at 1 TeV:
Vissible E
Higgs Mass
b-tag

M(H) / GeV

40 60 80 100 120 140 160 180 200

N
o
rm

a
liz

e
d

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

SGV Simulation

DBD Simulation

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 13 / 20

SGV Calorimeter simulation

Proof of principle of the parametrisation

Feed exactly the same physics events through FullSim or SGV.

Overall:
Total seen energy

e+e− →ZZ → four jets:
Reconstructed MZ at
different stages in FullSim.
Seen Reconstructed MZ ,
FullSim and SGV.
Jet-Energy resoulution

Zhh at 1 TeV:
Vissible E
Higgs Mass
b-tag

1st largest blikeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.1

0.2

0.3

0.4

0.5

0.6

SGV Simulation

DBD Simulation

2nd largest blikeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.05

0.1

0.15

0.2

0.25

3rd largest blikeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0.01

0.02

0.03

0.04

0.05

0.06

0.07

4th largest blikeness

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.02

0.04

0.06

0.08

0.1

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 13 / 20

SGV Calorimeter simulation

Proof of principle of the parametrisation

Feed exactly the same physics events through FullSim or SGV.

Overall:
Total seen energy

e+e− →ZZ → four jets:
Reconstructed MZ at
different stages in FullSim.
Seen Reconstructed MZ ,
FullSim and SGV.
Jet-Energy resoulution

Zhh at 1 TeV:
Vissible E
Higgs Mass
b-tag

1st largest blikeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.1

0.2

0.3

0.4

0.5

0.6

SGV Simulation

DBD Simulation

2nd largest blikeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.05

0.1

0.15

0.2

0.25

3rd largest blikeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0.01

0.02

0.03

0.04

0.05

0.06

0.07

4th largest blikeness

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.02

0.04

0.06

0.08

0.1

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 13 / 20

SGV Calorimeter simulation

Proof of principle of the parametrisation

Feed exactly the same physics events through FullSim or SGV.

Overall:
Total seen energy

e+e− →ZZ → four jets:
Reconstructed MZ at
different stages in FullSim.
Seen Reconstructed MZ ,
FullSim and SGV.
Jet-Energy resoulution

Zhh at 1 TeV:
Vissible E
Higgs Mass
b-tag

1st largest blikeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.1

0.2

0.3

0.4

0.5

0.6

SGV Simulation

DBD Simulation

2nd largest blikeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.05

0.1

0.15

0.2

0.25

3rd largest blikeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0.01

0.02

0.03

0.04

0.05

0.06

0.07

4th largest blikeness

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.02

0.04

0.06

0.08

0.1

1st largest blikeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.1

0.2

0.3

0.4

0.5

0.6

SGV Simulation

DBD Simulation

2nd largest blikeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.05

0.1

0.15

0.2

0.25

3rd largest blikeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0.01

0.02

0.03

0.04

0.05

0.06

0.07

4th largest blikeness

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.02

0.04

0.06

0.08

0.1

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 13 / 20

Technicalities

Technicalities

Written in Fortran 08, a re-write of the Fortran77-based SGV2
series.
Managed in SVN.Install script included.
Features:

Callable PYTHIA, Whizard (v. 1.x, only, since v2.x is not yet callable
as a subroutine).
Input from PYJETS, stdhep, slcio, GuineaPig.
Output of generated event to PYJETS, stdhep or slcio.
Produce LCIO-DST look-alike of reconstructed events.
samples subdirectory with steering and code for eg. scan single
particles, create ntuples with “all” information (right now, as hbook ntuples, so

need CERNLIB for this, can be converted to ROOT w/ h2root. Direct Root interface comming) .
Development on calorimeters (see later)

Typical generation+simulation+reconstruction time O(10) ms.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 14 / 20

Technicalities

Technicalities

Written in Fortran 08, a re-write of the Fortran77-based SGV2
series.
Managed in SVN.Install script included.
Features:

Callable PYTHIA, Whizard (v. 1.x, only, since v2.x is not yet callable
as a subroutine).
Input from PYJETS, stdhep, slcio, GuineaPig.
Output of generated event to PYJETS, stdhep or slcio.
Produce LCIO-DST look-alike of reconstructed events.
samples subdirectory with steering and code for eg. scan single
particles, create ntuples with “all” information (right now, as hbook ntuples, so

need CERNLIB for this, can be converted to ROOT w/ h2root. Direct Root interface comming) .
Development on calorimeters (see later)

Typical generation+simulation+reconstruction time O(10) ms.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 14 / 20

Technicalities

Technicalities

Written in Fortran 08, a re-write of the Fortran77-based SGV2
series.
Managed in SVN.Install script included.
Features:

Callable PYTHIA, Whizard (v. 1.x, only, since v2.x is not yet callable
as a subroutine).
Input from PYJETS, stdhep, slcio, GuineaPig.
Output of generated event to PYJETS, stdhep or slcio.
Produce LCIO-DST look-alike of reconstructed events.
samples subdirectory with steering and code for eg. scan single
particles, create ntuples with “all” information (right now, as hbook ntuples, so

need CERNLIB for this, can be converted to ROOT w/ h2root. Direct Root interface comming) .
Development on calorimeters (see later)

Typical generation+simulation+reconstruction time O(10) ms.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 14 / 20

Technicalities

Technicalities

Written in Fortran 08, a re-write of the Fortran77-based SGV2
series.
Managed in SVN.Install script included.
Features:

Callable PYTHIA, Whizard (v. 1.x, only, since v2.x is not yet callable
as a subroutine).
Input from PYJETS, stdhep, slcio, GuineaPig.
Output of generated event to PYJETS, stdhep or slcio.
Produce LCIO-DST look-alike of reconstructed events.
samples subdirectory with steering and code for eg. scan single
particles, create ntuples with “all” information (right now, as hbook ntuples, so

need CERNLIB for this, can be converted to ROOT w/ h2root. Direct Root interface comming) .
Development on calorimeters (see later)

Typical generation+simulation+reconstruction time O(10) ms.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 14 / 20

Technicalities

Installing SGV

Do
svn co https://svnsrv.desy.de/public/sgv/trunk/ sgv/

Then
cd sgv ; . ./install

This will take you about 30 seconds ...

Study README do get the first test job done (another 30 seconds)
Look README in the samples sub-directory, to enhance the
capabilities, eg.:

Get the LCIO i/o set up.
Get STDHEP installed.
Get Pythia installed.
Get Whizard (basic or ILC-tuned) installed.
Get CERNLIB installed in native 64bit, iff hbook needed.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 15 / 20

Technicalities

Installing SGV

Do
svn co https://svnsrv.desy.de/public/sgv/trunk/ sgv/

Then
cd sgv ; . ./install

This will take you about 30 seconds ...

Study README do get the first test job done (another 30 seconds)
Look README in the samples sub-directory, to enhance the
capabilities, eg.:

Get the LCIO i/o set up.
Get STDHEP installed.
Get Pythia installed.
Get Whizard (basic or ILC-tuned) installed.
Get CERNLIB installed in native 64bit, iff hbook needed.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 15 / 20

Technicalities

Installing SGV

Do
svn co https://svnsrv.desy.de/public/sgv/trunk/ sgv/

Then
cd sgv ; . ./install

This will take you about 30 seconds ...

Study README do get the first test job done (another 30 seconds)
Look README in the samples sub-directory, to enhance the
capabilities, eg.:

Get the LCIO i/o set up.
Get STDHEP installed.
Get Pythia installed.
Get Whizard (basic or ILC-tuned) installed.
Get CERNLIB installed in native 64bit, iff hbook needed.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 15 / 20

Technicalities

LCIO DST mass-production

SGV has been used to produce ILD LCIO DST:s for the full DBD
benchmarks- several times.

43 Mevents.
∼ 1 hour of wall-clock time (first submit to last completed) on the
German NAF.
Used to filter out the seeable pairs in 100 000 bunch-crossings
from GuineaPig.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 16 / 20

Technicalities

LCIO DST mass-production

SGV has been used to produce ILD LCIO DST:s for the full DBD
benchmarks- several times.

43 Mevents.
∼ 1 hour of wall-clock time (first submit to last completed) on the
German NAF.
Used to filter out the seeable pairs in 100 000 bunch-crossings
from GuineaPig.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 16 / 20

Outlook and Summary

Recently added features
Generator input also as LCIO MCParticles and GuineaPig (in addtion to
StdHep and native PYJETS)

Module to output LCIO-DST after reconstruction.
Filter-mode fully implemented. Possible to skip events at

Generator level
Simulation level
Reconstruction/analysis level

and conditionally output generated event at any point, as LCIO or
StdHep.
Native Fortran08 interface to LCIO, automatically built from LCIO
DoxyGen.
No CERNLIB dependence by default:

FFREAD replace by namelists, for free format input (NB: means that

steering-files need to be slightly modified)

A few needed routines from CERNLIB now in reimplemeted SGV
Usage of ZEBRA and HBOOK conditional, by default not set.
Set NOCERNLIB env variable to avoid that scripts checks for a
working cernlib!

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 17 / 20

Outlook and Summary

Recently added features
Generator input also as LCIO MCParticles and GuineaPig (in addtion to
StdHep and native PYJETS)

Module to output LCIO-DST after reconstruction.
Filter-mode fully implemented. Possible to skip events at

Generator level
Simulation level
Reconstruction/analysis level

and conditionally output generated event at any point, as LCIO or
StdHep.
Native Fortran08 interface to LCIO, automatically built from LCIO
DoxyGen.
No CERNLIB dependence by default:

FFREAD replace by namelists, for free format input (NB: means that

steering-files need to be slightly modified)

A few needed routines from CERNLIB now in reimplemeted SGV
Usage of ZEBRA and HBOOK conditional, by default not set.
Set NOCERNLIB env variable to avoid that scripts checks for a
working cernlib!

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 17 / 20

Outlook and Summary

Recently added features
Generator input also as LCIO MCParticles and GuineaPig (in addtion to
StdHep and native PYJETS)

Module to output LCIO-DST after reconstruction.
Filter-mode fully implemented. Possible to skip events at

Generator level
Simulation level
Reconstruction/analysis level

and conditionally output generated event at any point, as LCIO or
StdHep.
Native Fortran08 interface to LCIO, automatically built from LCIO
DoxyGen.
No CERNLIB dependence by default:

FFREAD replace by namelists, for free format input (NB: means that

steering-files need to be slightly modified)

A few needed routines from CERNLIB now in reimplemeted SGV
Usage of ZEBRA and HBOOK conditional, by default not set.
Set NOCERNLIB env variable to avoid that scripts checks for a
working cernlib!

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 17 / 20

Outlook and Summary

Recently added features
Generator input also as LCIO MCParticles and GuineaPig (in addtion to
StdHep and native PYJETS)

Module to output LCIO-DST after reconstruction.
Filter-mode fully implemented. Possible to skip events at

Generator level
Simulation level
Reconstruction/analysis level

and conditionally output generated event at any point, as LCIO or
StdHep.
Native Fortran08 interface to LCIO, automatically built from LCIO
DoxyGen.
No CERNLIB dependence by default:

FFREAD replace by namelists, for free format input (NB: means that

steering-files need to be slightly modified)

A few needed routines from CERNLIB now in reimplemeted SGV
Usage of ZEBRA and HBOOK conditional, by default not set.
Set NOCERNLIB env variable to avoid that scripts checks for a
working cernlib!

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 17 / 20

Outlook and Summary

Recently added features
Generator input also as LCIO MCParticles and GuineaPig (in addtion to
StdHep and native PYJETS)

Module to output LCIO-DST after reconstruction.
Filter-mode fully implemented. Possible to skip events at

Generator level
Simulation level
Reconstruction/analysis level

and conditionally output generated event at any point, as LCIO or
StdHep.
Native Fortran08 interface to LCIO, automatically built from LCIO
DoxyGen.
No CERNLIB dependence by default:

FFREAD replace by namelists, for free format input (NB: means that

steering-files need to be slightly modified)

A few needed routines from CERNLIB now in reimplemeted SGV
Usage of ZEBRA and HBOOK conditional, by default not set.
Set NOCERNLIB env variable to avoid that scripts checks for a
working cernlib!

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 17 / 20

Outlook and Summary

Planed developments

Minimal interface to Root:
Open and close Root-files
Create and fill ntuples and histograms
Output objects

Studying light-weight alternative to Root
netCDF/HDF5 - free,available on any Linux, API for Fortran, C++,
C, Java, ..
Interfaces to R, MathLAB, Mathematica, Python, Octave (and Root)
Unclear how well this works on TB size data?

Zero B-field: Also usable for fixed taget

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 18 / 20

Outlook and Summary

Planed developments

Minimal interface to Root:
Open and close Root-files
Create and fill ntuples and histograms
Output objects

Studying light-weight alternative to Root
netCDF/HDF5 - free,available on any Linux, API for Fortran, C++,
C, Java, ..
Interfaces to R, MathLAB, Mathematica, Python, Octave (and Root)
Unclear how well this works on TB size data?

Zero B-field: Also usable for fixed taget

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 18 / 20

Outlook and Summary

Planed developments

Minimal interface to Root:
Open and close Root-files
Create and fill ntuples and histograms
Output objects

Studying light-weight alternative to Root
netCDF/HDF5 - free,available on any Linux, API for Fortran, C++,
C, Java, ..
Interfaces to R, MathLAB, Mathematica, Python, Octave (and Root)
Unclear how well this works on TB size data?

Zero B-field: Also usable for fixed taget

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 18 / 20

Outlook and Summary

Summary

The SGV FastSim program for ILC physics simulation was
presented, and (I hope) was shown to be up to the job, both in
physics and computing performance.
The method to emulate the performance of FullReco particle-flow
(PandoraPFO) was explained.
Comparisons to FullSim (DDsim/Mokka+Marlin) was shown to be
quite good.
SGV mass production works

Is done in O(1) hour.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 19 / 20

Outlook and Summary

Summary

The SGV FastSim program for ILC physics simulation was
presented, and (I hope) was shown to be up to the job, both in
physics and computing performance.
The method to emulate the performance of FullReco particle-flow
(PandoraPFO) was explained.
Comparisons to FullSim (DDsim/Mokka+Marlin) was shown to be
quite good.
SGV mass production works

Is done in O(1) hour.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 19 / 20

Outlook and Summary

Summary

The SGV FastSim program for ILC physics simulation was
presented, and (I hope) was shown to be up to the job, both in
physics and computing performance.
The method to emulate the performance of FullReco particle-flow
(PandoraPFO) was explained.
Comparisons to FullSim (DDsim/Mokka+Marlin) was shown to be
quite good.
SGV mass production works

Is done in O(1) hour.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 19 / 20

Outlook and Summary

Summary

The SGV FastSim program for ILC physics simulation was
presented, and (I hope) was shown to be up to the job, both in
physics and computing performance.
The method to emulate the performance of FullReco particle-flow
(PandoraPFO) was explained.
Comparisons to FullSim (DDsim/Mokka+Marlin) was shown to be
quite good.
SGV mass production works

Is done in O(1) hour.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 19 / 20

Outlook and Summary

Summary

The SGV FastSim program for ILC physics simulation was
presented, and (I hope) was shown to be up to the job, both in
physics and computing performance.
The method to emulate the performance of FullReco particle-flow
(PandoraPFO) was explained.
Comparisons to FullSim (DDsim/Mokka+Marlin) was shown to be
quite good.
SGV mass production works

Is done in O(1) hour.

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 19 / 20

Outlook and Summary

Summary

The SGV FastSim program for ILC physics simulation was
presented, and (I hope) was shown to be up to the job, both in
physics and computing performance.
The method to emulate the performance of FullReco particle-flow
(PandoraPFO) was explained.
Comparisons to FullSim (DDsim/Mokka+Marlin) was shown to be
quite good.
SGV mass production works

Is done in O(1) hour.

Installing SGV
svn co https://svnsrv.desy.de/public/sgv/trunk/ sgv/
Then
cd sgv ; . ./install

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 19 / 20

Outlook and Summary

Thank You !

Mikael Berggren (DESY-HH) SGV LCWS, Oct 2019 20 / 20

Backup

BACKUP

BACKUP SLIDES

Observed distributions

Probability to split (charged
had or γ)
Fraction the energy vs
distance
... and vs E
Fit of the Distribution of the
fraction
Average fraction vs. E and
distance. Isolation En

er
gyIsolation En

er
gy

P
ro
b
ab
il
it
y

0 20 40 60 80 100 120 140
0
5
10
15
20
25
30
35
40
45
50

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140
0
5
10
15
20
25
30
35
40
45
50

0

0.2

0.4

0.6

0.8

1

Observed distributions

Probability to split (charged
had or γ)
Fraction the energy vs
distance
... and vs E
Fit of the Distribution of the
fraction
Average fraction vs. E and
distance. Isolation En

er
gy

P
ro
b
ab
il
it
y

0 5 10 15 20 25 30 35 40 45 50
0
5
10
15
20
25
30
35
40
45
50

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50
0
5
10
15
20
25
30
35
40
45
50

0

0.2

0.4

0.6

0.8

1

Observed distributions

Probability to split (charged
had or γ)
Fraction the energy vs
distance
... and vs E
Fit of the Distribution of the
fraction
Average fraction vs. E and
distance.

Isolation
Fr
ac
tio
n

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

0

2000

4000

6000

8000

10000

12000

14000

16000

Isolation
Fr
ac
tio
n

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1

10

10
2

10
3

10
4

Observed distributions

Probability to split (charged
had or γ)
Fraction the energy vs
distance
... and vs E
Fit of the Distribution of the
fraction
Average fraction vs. E and
distance. Energy

Fr
ac
tio
n

0 5 10 15 20 25 30 35 40 45 50
0

0.2
0.4

0.6
0.8

1
1

10

10
2

10
3

10
4

10
5

Observed distributions

Probability to split (charged
had or γ)
Fraction the energy vs
distance
... and vs E
Fit of the Distribution of the
fraction
Average fraction vs. E and
distance.

Fraction

10
2

10
3

10
4

10
5

0 0.2 0.4 0.6 0.8 1

Observed distributions

Probability to split (charged
had or γ)
Fraction the energy vs
distance
... and vs E
Fit of the Distribution of the
fraction
Average fraction vs. E and
distance. Isolation En

er
gy

F
ra
ct
io
n

0 20 40 60 80 100 120 140
0
5
10
15
20
25
30
35
40
45
50

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

γγ background

Total cross-section for e+e− → γγe+e− → qq̄e+e−: 35 nb (PYTHIA)∫
Ldt = 500 fb−1 → 18 ?109 events are expected.

10 ms to generate one event.
10 ms to fastsim (SGV) one event.

108 s of CPU time is needed, ie more than 3 years. But:This goes to
3000 years with full simulation.

γγ background

Total cross-section for e+e− → γγe+e− → qq̄e+e−: 35 nb (PYTHIA)∫
Ldt = 500 fb−1 → 18 ?109 events are expected.

10 ms to generate one event.
10 ms to fastsim (SGV) one event.

108 s of CPU time is needed, ie more than 3 years. But:This goes to
3000 years with full simulation.

γγ background

Total cross-section for e+e− → γγe+e− → qq̄e+e−: 35 nb (PYTHIA)∫
Ldt = 500 fb−1 → 18 ?109 events are expected.

10 ms to generate one event.
10 ms to fastsim (SGV) one event.

108 s of CPU time is needed, ie more than 3 years. But:This goes to
3000 years with full simulation.

SUSY parameter scans

Simple example:
MSUGRA: 4 parameters + sign of µ
Scan each in eg. 20 steps
Eg. 5000 events per point (modest requirement: in sps1a’ almost
1 million SUSY events are expected for 500 fb−1 !)
= 204 × 2 × 5000 = 1.6× 109 events to generate...

Slower to generate and simulate than γγ events

Also here: CPU millenniums with full simulation

SUSY parameter scans

Simple example:
MSUGRA: 4 parameters + sign of µ
Scan each in eg. 20 steps
Eg. 5000 events per point (modest requirement: in sps1a’ almost
1 million SUSY events are expected for 500 fb−1 !)
= 204 × 2 × 5000 = 1.6× 109 events to generate...

Slower to generate and simulate than γγ events

Also here: CPU millenniums with full simulation

Use-cases at the ILC

Used for fastsim physics studies, eg. arXiv:hep-ph/0510088,
arXiv:hep-ph/0508247, arXiv:hep-ph/0406010,
arXiv:hep-ph/9911345 and arXiv:hep-ph/9911344.
Used for flavour-tagging training.
Used for overall detector optimisation, see Eg. Vienna ECFA WS
(2007), See Ilcagenda > Conference and Workshops > 2005 >
ECFA Vienna Tracking
GLD/LDC merging and LOI, see eg. Ilcagenda > Detector Design
& Physics Studies > Detector Design Concepts > ILD > ILD
Workshop > ILD Meeting, Cambridge > Agenda >Sub-detector
Optimisation I

The latter two: Use the Covariance machine to get analytical
expressions for performance (ie. not simulation)

White paper

Written in Fortran 95.
CERNLIB dependence. Much reduced wrt. old F77 version,
mostly by using Fortran 95’s built-in matrix algebra.
Managed in SVN.Install script included.
Features:

Callable PYTHIA, Whizard.
Input from PYJETS or stdhep.
Output of generated event to PYJETS or stdhep.
samples subdirectory with steering and code for eg. scan single
particles, create hbook ntuple with “all” information (can be
converted to ROOT w/ h2root). And: output LCIO DST.
Development on calorimeters (see later)

Tested to work on both 32 and 64 bit out-of-the-box.
Timing verified to be faster (by 15%) than the f77 version.

White paper

Written in Fortran 95.
CERNLIB dependence. Much reduced wrt. old F77 version,
mostly by using Fortran 95’s built-in matrix algebra.
Managed in SVN.Install script included.
Features:

Callable PYTHIA, Whizard.
Input from PYJETS or stdhep.
Output of generated event to PYJETS or stdhep.
samples subdirectory with steering and code for eg. scan single
particles, create hbook ntuple with “all” information (can be
converted to ROOT w/ h2root). And: output LCIO DST.
Development on calorimeters (see later)

Tested to work on both 32 and 64 bit out-of-the-box.
Timing verified to be faster (by 15%) than the f77 version.

White paper

Written in Fortran 95.
CERNLIB dependence. Much reduced wrt. old F77 version,
mostly by using Fortran 95’s built-in matrix algebra.
Managed in SVN.Install script included.
Features:

Callable PYTHIA, Whizard.
Input from PYJETS or stdhep.
Output of generated event to PYJETS or stdhep.
samples subdirectory with steering and code for eg. scan single
particles, create hbook ntuple with “all” information (can be
converted to ROOT w/ h2root). And: output LCIO DST.
Development on calorimeters (see later)

Tested to work on both 32 and 64 bit out-of-the-box.
Timing verified to be faster (by 15%) than the f77 version.

White paper

Written in Fortran 95.
CERNLIB dependence. Much reduced wrt. old F77 version,
mostly by using Fortran 95’s built-in matrix algebra.
Managed in SVN.Install script included.
Features:

Callable PYTHIA, Whizard.
Input from PYJETS or stdhep.
Output of generated event to PYJETS or stdhep.
samples subdirectory with steering and code for eg. scan single
particles, create hbook ntuple with “all” information (can be
converted to ROOT w/ h2root). And: output LCIO DST.
Development on calorimeters (see later)

Tested to work on both 32 and 64 bit out-of-the-box.
Timing verified to be faster (by 15%) than the f77 version.

White paper

Written in Fortran 95.
CERNLIB dependence. Much reduced wrt. old F77 version,
mostly by using Fortran 95’s built-in matrix algebra.
Managed in SVN.Install script included.
Features:

Callable PYTHIA, Whizard.
Input from PYJETS or stdhep.
Output of generated event to PYJETS or stdhep.
samples subdirectory with steering and code for eg. scan single
particles, create hbook ntuple with “all” information (can be
converted to ROOT w/ h2root). And: output LCIO DST.
Development on calorimeters (see later)

Tested to work on both 32 and 64 bit out-of-the-box.
Timing verified to be faster (by 15%) than the f77 version.

Installing SGV

svn export https://svnsrv.desy.de/public/sgv/tags/SGV-3.0rc1/
SGV-3.0rc1/

Then

bash install

This will take you about a minute ...
Study README, and README in the samples sub-directory, to eg.:

Get STDHEP installed.
Get CERNLIB installed in native 64bit.
Get Whizard (basic or ILC-tuned) installed, with complications
solved.
Get the LCIO-DST writer set up

Installing SGV

svn export https://svnsrv.desy.de/public/sgv/tags/SGV-3.0rc1/
SGV-3.0rc1/

Then

bash install

This will take you about a minute ...
Study README, and README in the samples sub-directory, to eg.:

Get STDHEP installed.
Get CERNLIB installed in native 64bit.
Get Whizard (basic or ILC-tuned) installed, with complications
solved.
Get the LCIO-DST writer set up

Installing SGV

svn export https://svnsrv.desy.de/public/sgv/tags/SGV-3.0rc1/
SGV-3.0rc1/

Then

bash install

This will take you about a minute ...
Study README, and README in the samples sub-directory, to eg.:

Get STDHEP installed.
Get CERNLIB installed in native 64bit.
Get Whizard (basic or ILC-tuned) installed, with complications
solved.
Get the LCIO-DST writer set up

Installing SGV

svn export https://svnsrv.desy.de/public/sgv/tags/SGV-3.0rc1/
SGV-3.0rc1/

Then

bash install

This will take you about a minute ...
Study README, and README in the samples sub-directory, to eg.:

Get STDHEP installed.
Get CERNLIB installed in native 64bit.
Get Whizard (basic or ILC-tuned) installed, with complications
solved.
Get the LCIO-DST writer set up

Calorimeter simulation: SGV strategy

Concentrate on what really matters:
True charged particles splitting off (a part of) their shower:
double-counting.
True neutral particles merging (a part of) their shower with charged
particles: enetgy loss.

Don’t care about neutral-neutral or charged-charged merging.
Nor about multiple splitting/merging.
Then: identify the most relevant variables available in fast
simulation:

Cluster energy.
Distance to nearest particle of “the other type”
EM or hadron.
Barrel or end-cap.

Calorimeter simulation: SGV strategy

Concentrate on what really matters:
True charged particles splitting off (a part of) their shower:
double-counting.
True neutral particles merging (a part of) their shower with charged
particles: enetgy loss.

Don’t care about neutral-neutral or charged-charged merging.
Nor about multiple splitting/merging.
Then: identify the most relevant variables available in fast
simulation:

Cluster energy.
Distance to nearest particle of “the other type”
EM or hadron.
Barrel or end-cap.

Calorimeter simulation: SGV strategy

Concentrate on what really matters:
True charged particles splitting off (a part of) their shower:
double-counting.
True neutral particles merging (a part of) their shower with charged
particles: enetgy loss.

Don’t care about neutral-neutral or charged-charged merging.
Nor about multiple splitting/merging.
Then: identify the most relevant variables available in fast
simulation:

Cluster energy.
Distance to nearest particle of “the other type”
EM or hadron.
Barrel or end-cap.

Collections

Added sensible values to all collections that will (probably) be
there on the DST from the fullSim production.

BuildUpVertex

BuildUpVertex_RP

MarlinTrkTracks

PandoraClusters

PandoraPFOs

PrimaryVertex

RecoMCTruthLink

MCParticlesSkimmed
V0Vertices
V0RecoParticles
BCALParticles
BCALClusters
BCALMCTruthLink
PrimaryVertex_RP

Also added more relation links:

MCTruthRecoLink

ClusterMCTruthLink

MCTruthClusterLink

MCTruthTrackLink
TrackMCTruthLink
MCTruthBcalLink

Comments

Secondary vertices (as before):
Use true information to find all secondary vertices.
For all vertices with ≥ 2 seen charged tracks: do vertex fit.
Concequence:

Vertex finding is too good.
Vertex quality should be comparable to FullSim.

In addition: Decide from parent pdg-code if it goes into BuildUpVertex
or V0Vertices !
MCParticle :

There might be some issues with history codes in the earlier part
of the event (initial beam-particles, 94-objects, ...)

Comments

Clusters:
Are done with the Pandora confusion parametrisation on.
Expect ∼ correct dispersion of jet energy, but a few % to high
central value.
See my talk three weeks ago.
Warning: Clusters are always only in one detector , so don’t use
Ehad/EEM for e/π: It will be ≡ 100 % efficient !

Navigators
All the navigators that the TruthLinker processor makes when all
flags are switched on are created:

Both Seen to True and True to Seen (weights are different !)
Seen is both PFOs, tracks and clusters.
The standard RecoMCTruthLink collection is as it would be from
FullSim ie. weights between 0 and 1.

Outlook

Include a filter-mode:
Generate event inside SGV.
Run SGV detector simulation and analysis.
Decide what to do: Fill some histos, fill ntuple, output LCIO, or
better do full sim
In the last case: output STDHEP of event

Update documentation and in-line comments, to reflect new
structure.
Consolidate use of Fortran 95/203/2008 features. Possibly - when
gcc/gfortran 4.4 (ie. Fortran 2003) is common-place - Object
Orientation, if there is no performance penalty.

Use of user-defined types.
Use of PURE and ELEMENTAL routines,
Optimal choice between pointer, allocatable and automatic and/or
assumed-size, assumed-shape, and explicit arrays.

I/O over FIFO:s to avoid storage and I/O rate limitations.
The Grid.
Investigate running on GPU:s.
Further reduce CERNLIB dependence - at a the cost of backward
compatibility on steering files ? HBOOK dependence will remain
in the forseable future - but only for user convenience : SGV itself
doesn’t need it.

Outlook

Include a filter-mode:
Generate event inside SGV.
Run SGV detector simulation and analysis.
Decide what to do: Fill some histos, fill ntuple, output LCIO, or
better do full sim
In the last case: output STDHEP of event

Update documentation and in-line comments, to reflect new
structure.
Consolidate use of Fortran 95/203/2008 features. Possibly - when
gcc/gfortran 4.4 (ie. Fortran 2003) is common-place - Object
Orientation, if there is no performance penalty.

Use of user-defined types.
Use of PURE and ELEMENTAL routines,
Optimal choice between pointer, allocatable and automatic and/or
assumed-size, assumed-shape, and explicit arrays.

I/O over FIFO:s to avoid storage and I/O rate limitations.
The Grid.
Investigate running on GPU:s.
Further reduce CERNLIB dependence - at a the cost of backward
compatibility on steering files ? HBOOK dependence will remain
in the forseable future - but only for user convenience : SGV itself
doesn’t need it.

Outlook

Include a filter-mode:
Generate event inside SGV.
Run SGV detector simulation and analysis.
Decide what to do: Fill some histos, fill ntuple, output LCIO, or
better do full sim
In the last case: output STDHEP of event

Update documentation and in-line comments, to reflect new
structure.
Consolidate use of Fortran 95/203/2008 features. Possibly - when
gcc/gfortran 4.4 (ie. Fortran 2003) is common-place - Object
Orientation, if there is no performance penalty.

Use of user-defined types.
Use of PURE and ELEMENTAL routines,
Optimal choice between pointer, allocatable and automatic and/or
assumed-size, assumed-shape, and explicit arrays.

I/O over FIFO:s to avoid storage and I/O rate limitations.
The Grid.
Investigate running on GPU:s.
Further reduce CERNLIB dependence - at a the cost of backward
compatibility on steering files ? HBOOK dependence will remain
in the forseable future - but only for user convenience : SGV itself
doesn’t need it.

Outlook

Include a filter-mode:
Generate event inside SGV.
Run SGV detector simulation and analysis.
Decide what to do: Fill some histos, fill ntuple, output LCIO, or
better do full sim
In the last case: output STDHEP of event

Update documentation and in-line comments, to reflect new
structure.
Consolidate use of Fortran 95/203/2008 features. Possibly - when
gcc/gfortran 4.4 (ie. Fortran 2003) is common-place - Object
Orientation, if there is no performance penalty.

Use of user-defined types.
Use of PURE and ELEMENTAL routines,
Optimal choice between pointer, allocatable and automatic and/or
assumed-size, assumed-shape, and explicit arrays.

I/O over FIFO:s to avoid storage and I/O rate limitations.
The Grid.
Investigate running on GPU:s.
Further reduce CERNLIB dependence - at a the cost of backward
compatibility on steering files ? HBOOK dependence will remain
in the forseable future - but only for user convenience : SGV itself
doesn’t need it.

Outlook

Include a filter-mode:
Generate event inside SGV.
Run SGV detector simulation and analysis.
Decide what to do: Fill some histos, fill ntuple, output LCIO, or
better do full sim
In the last case: output STDHEP of event

Update documentation and in-line comments, to reflect new
structure.
Consolidate use of Fortran 95/203/2008 features. Possibly - when
gcc/gfortran 4.4 (ie. Fortran 2003) is common-place - Object
Orientation, if there is no performance penalty.

Use of user-defined types.
Use of PURE and ELEMENTAL routines,
Optimal choice between pointer, allocatable and automatic and/or
assumed-size, assumed-shape, and explicit arrays.

I/O over FIFO:s to avoid storage and I/O rate limitations.
The Grid.
Investigate running on GPU:s.
Further reduce CERNLIB dependence - at a the cost of backward
compatibility on steering files ? HBOOK dependence will remain
in the forseable future - but only for user convenience : SGV itself
doesn’t need it.

Outlook

Include a filter-mode:
Generate event inside SGV.
Run SGV detector simulation and analysis.
Decide what to do: Fill some histos, fill ntuple, output LCIO, or
better do full sim
In the last case: output STDHEP of event

Update documentation and in-line comments, to reflect new
structure.
Consolidate use of Fortran 95/203/2008 features. Possibly - when
gcc/gfortran 4.4 (ie. Fortran 2003) is common-place - Object
Orientation, if there is no performance penalty.

Use of user-defined types.
Use of PURE and ELEMENTAL routines,
Optimal choice between pointer, allocatable and automatic and/or
assumed-size, assumed-shape, and explicit arrays.

I/O over FIFO:s to avoid storage and I/O rate limitations.
The Grid.
Investigate running on GPU:s.
Further reduce CERNLIB dependence - at a the cost of backward
compatibility on steering files ? HBOOK dependence will remain
in the forseable future - but only for user convenience : SGV itself
doesn’t need it.

Outlook

Include a filter-mode:
Generate event inside SGV.
Run SGV detector simulation and analysis.
Decide what to do: Fill some histos, fill ntuple, output LCIO, or
better do full sim
In the last case: output STDHEP of event

Update documentation and in-line comments, to reflect new
structure.
Consolidate use of Fortran 95/203/2008 features. Possibly - when
gcc/gfortran 4.4 (ie. Fortran 2003) is common-place - Object
Orientation, if there is no performance penalty.

Use of user-defined types.
Use of PURE and ELEMENTAL routines,
Optimal choice between pointer, allocatable and automatic and/or
assumed-size, assumed-shape, and explicit arrays.

I/O over FIFO:s to avoid storage and I/O rate limitations.
The Grid.
Investigate running on GPU:s.
Further reduce CERNLIB dependence - at a the cost of backward
compatibility on steering files ? HBOOK dependence will remain
in the forseable future - but only for user convenience : SGV itself
doesn’t need it.

	The need for fast simulation
	Fast simulation for ILC
	SGV
	Tracker simulation
	Calorimeter simulation

	Technicalities
	 Outlook and Summary
	Appendix

