Preparing SHERPA for e^+e^-

Alan Price

IPPP, DURHAM UNIVERSITY

October 31, 2019

- 1. SHERPA Event Generator
- 2. QED Corrections
- 3. NLO Calculations in SHERPA
- 4. BSM Calculations in SHERPA

SHERPA EVENT GENERATOR

Hard Interaction

 LO, NLO QCD/EW

 Radiative Corrections

 Catani-Seymour based
 PS, Dire, YFS QED
 Resummation

- Multiple Interactions
 - Sjöstrand-Zijl mode
- Hadronization

Cluster hadronization model

Hadron Decays

Phase space or EFTs,YFS QED corrections

SHERPA EVENT GENERATOR

Hard Interaction LO, NLO QCD/EW Radiative Corrections Catani-Seymour based PS, Dire, YFS QED Resummation

MOTIVATION

- For precision physics a lepton-lepton collider is desirable
- The discovery of Higgs Boson tells us at what energy to run
- High precision understanding of the Higgs Boson requires below 1% uncertainties in the couplings
- $e^+e^- \rightarrow ZH$ optimal at 240GeV. Uncertainties mainly due to loops
- @ two-loop intrinsic uncertainty *O*(1%), compared to expected experimental error *O*(0.4%) (FCC-ee)

We must not forget that an e^+e^- will precisely measure EW observables

Observable	Where from	Present (LEP)	FCC stat.	FCC syst	Now FCC	Challenge
M_Z [MeV]	Z linesh.	$91187.5 \pm 2.1\{0.3\}$	0.005	0.1	3	QED Corrections
Γ_Z [MeV]	Z linesh.	$2495.2 \pm 2.1\{0.2\}$	0.008	0.1	2	QED Corrections
$R_l^Z = \Gamma_h / \Gamma_l$	$\sigma(M_Z)$	$20.767 \pm 0.025 \{0.012\}$	$6 \cdot 10^{-5}$	$1 \cdot 10^{-3}$	12	QED Corrections
N_{ν}	$\sigma(M_Z)$	$2.984 \pm 0.008 \{0.006\}$	$5 \cdot 10^{-6}$	$1 \cdot 10^{-3}$	6	Bhabha scattering (QED)
M_W [MeV]	ADLO	$80376 \pm 33\{6\}$	0.5	0.3	12	QED Corrections
$A_{FB,\mu}^{M_Z \pm 3.5 \text{GeV}}$	$\frac{d\sigma}{d\cos\theta}$	$\pm 0.020\{0.001\}$	$1.0\cdot10^{-5}$	$0.3 \cdot 10^{-5}$	100	

Table: Adapted from Arxiv:1903.09895

QED CORRECTIONS AT THE Z POLE

Consider $e^+e^- \rightarrow X + n\gamma$

QED corrections (ISR) can be parametrised as,

$$\gamma_{n,m} = \left(\frac{\alpha}{\pi}\right)^n \left(2\ln\left(\frac{m_Z^2}{m_e^2}\right)\right)^m \quad 0 \le m \le n$$

- For future lepton collider $\gamma \leq 10^{-5} \rightarrow$ need to include corrections up to $\mathcal{O}(\alpha^3, L_e^3)$, $L_e = \ln\left(\frac{s}{m_e}\right)$
- Soft and Collinear photons need to be resummed

YFS EXPONENTIATION

Lets first consider virtual photon corrections in the soft limit

 $\overline{r=0}$

$$\mathcal{M}_{0}^{0} = M_{0}^{0}$$

$$\mathcal{M}_{0}^{1} = \alpha B M_{0}^{0} + M_{0}^{1}$$

$$\mathcal{M}_{0}^{1} = \frac{(\alpha B)^{2}}{2} M_{0}^{0} + \alpha B M_{0}^{1} + M_{0}^{2}$$

...

$$\mathcal{M}_{0}^{n_{V}} = \sum_{n=0}^{n_{V}} M_{0}^{n_{V}} \frac{(\alpha B)^{r}}{r!}$$

where B is the virtual infrared factor.

$$B = 2\alpha \Re \int \frac{d^4k}{k^2} \frac{i}{(2\pi)^2} \left(\frac{2p_1 - k}{2kp_1 - k^2} - \frac{2p_2 - k}{2kp_2 - k^2}\right)^2$$

Summing to infinity yields,

$$\sum_{n_V=0}^{\infty} \mathcal{M}_0^{n_V} = e^{\alpha B} \sum_{n_V=0}^{\infty} \mathcal{M}_0^{n_V}$$

This can be generalised to n_R real photons such that,

$$\sum_{n_{V}=0}^{\infty} \left| \mathcal{M}_{n_{R}}^{n_{V}+\frac{1}{2}n_{R}} \right|^{2} = e^{2\alpha B} \sum_{n_{V}=0}^{\infty} \left| \mathcal{M}_{n_{R}}^{n_{V}+\frac{1}{2}n_{R}} \right|^{2}$$

For a single photon emission we have,

$$\frac{1}{2(2\pi)^3} \sum_{n_V=0}^{\infty} \left| M_1^{n_V + \frac{1}{2}} \right|^2 = \tilde{S}(k) \left| M_0^{n_V + \frac{1}{2}} \right|^2 + \sum_{n_V=0}^{\infty} \tilde{\beta}_1^{n_V + 1}(k)$$

- Factorisation of real emissions occurs at the amplitude squared level
- Eikonal term $\tilde{S}(k) = -\frac{\alpha}{4\pi^2} \left(\frac{p_1}{p_1 k} \frac{p_2}{p_2 k}\right)^2$
- $\tilde{\beta}_{n_R}^{n_V+n_R}$ complete IR finite squared matrix element for born process plus n_V virtual and n_R photons

For n_R photons summed over all virtual contributions,

$$\begin{split} \left(\frac{1}{2(2\pi)^3} \right)^{n_R} \left| \sum_{n_V=0}^{\infty} M_{n_R}^{n_V + \frac{1}{2}n_R} \right|^2 \\ &= \left| \tilde{\beta}_0 \prod_{i=1}^{n_R} \left[\tilde{S}(k_i) \right] + \sum_{i=1}^{n_R} \left[\frac{\tilde{\beta}_1(k_i)}{\tilde{S}(k_i)} \right] \prod_{j=1}^{n_R} \left[\tilde{S}(k_j) \right] \\ &+ \sum_{\substack{i,j=1\\i \neq j}}^{n_R} \left[\frac{\tilde{\beta}_2(k_i, k_j)}{\tilde{S}(k_i)\tilde{S}(k_j)} \right] \prod_{l=1}^{n_R} \left[\tilde{S}(k_l) \right] + \dots \\ &+ \sum_{i=1}^{n_R} \left[\tilde{\beta}_{n_R-1}(k_1, \dots, k_{i-1}, k_{i+1}, \dots, k_{n_R}) \tilde{S}(k_i) \right] + \tilde{\beta}_{n_R}(k_1, \dots, k_{n_R}) \end{split}$$

MASTER EQUATION

This gives us our cross section

$$\sigma = \sum_{n=0}^{\infty} \frac{1}{n!} \int d\Phi_q \ e^{2\alpha B + 2\alpha \tilde{B}} \prod_{j=1}^n \tilde{S}(k_j) \theta(\Omega; k_j) \left[\tilde{\beta}_0(p_1, p_2; q_1, \cdots, q_{n'}) + \sum_{j=1}^n \frac{\tilde{\beta}_1(p_1, p_2; q_1, \cdots, q_{n'}; k_j)}{S(k_j)} + \sum_{\substack{j,l=1\\j \neq l}}^n \frac{\tilde{\beta}_2(p_1, p_2; q_1, \cdots, q_{n'}; k_j, k_l)}{S(k_j)S(k_l)} + \cdots \right]$$

The exponentiation of real emissions gives a factor

$$\tilde{B} = -\frac{1}{8\pi^2} \int \frac{d^3k}{k^0} \Theta(\Omega, k) \left(\frac{p_1}{p_1k} - \frac{p_2}{p_2k}\right)^2$$

The Power of YFS

- $\tilde{\beta}$ are infrared finite and are calculated perturbatively order by order
 - Non trivial for other methods e.g Structure function
- Photons are explicitly created
 - Allows us to calculate properties of soft photons e.g Energy, Angular distribution
 - Allows for decays e.g $\gamma \rightarrow e^+e^-$

HIGGS-STRAHLUNG

• At the Higgs pole ISR contributes a $\approx 10\%$ effect

Two processes $e^+e^- \to \mu^+\mu^-$ and $e^+e^- \to HZ \to \mu\mu bb$

	Z-Pole 92.1GeV	ZH-Pole 250 GeV
Born	2010.01 pb	4.682 fb
$\mathcal{O}(\alpha L)$	1616.34 pb	3.864 fb
$\mathcal{O}\left(\alpha^{2}L^{2}\right)$	1619.11 pb	3.868 fb
$\mathcal{O}\left(\alpha^{3}L^{3}\right)$	1619 .72 pb	3.869 fb

Theoretical (conservative) uncertainty $\approx 0.03\%$

- It interface with other SHERPA modules e.g ME Generator, PS, Hadronization, UFO...
- Fully automated for arbitrary processes
- \blacksquare However some higher order corrections have been hard coded for $e^+e^- \to f\bar{f}$
- \blacksquare YFS has been fully implemented for FSR up to $\rm NNLO$ QCD and $\rm NLO_{\rm EW}$
- No ISR/FSR interference (yet)

Fully automated in SHERPA for $\rm NLO_{QCD}$ and $\rm NLO_{EW}$

- Based on Catani-Seymour dipole subtraction
- \blacksquare SHERPA \rightarrow Born and real emission ME, infrared subtraction, phase space generation, process coordination
- Dedicated tools \rightarrow Virtual corrections
 - OPENLOOPS
 - Recola
 - GoSam
 - MADLOOP

Buccioni et.al Denner et.al Cullen et.al Hirschi et.al

HIGGS-STRAHLUNG AT NLO_{EW}

- Calculations preformed in the G_{μ} scheme. Masses are treated in the complex mass scheme
- \blacksquare $\rm NLO_{EW}$ contributes a \approx 5% effect at the Higgs pole
- Virtual loops taken from OPENLOOPS

BSM CALCULATIONS IN SHERPA

[Höche,Kuttimalai,Schumann,Siegert,] arXiv:1412.6478

- Model information from Feynrules [Christensen,Duhr] arXiv:0806.4194,[Alloul et al.] arXiv:1310.1921 via UFO [Degrande at al.] arXiv:1108.2040
- Fully automated calculations: /prefix/bin/Sherpa-generate-model <path-to-ufo-model>

Model	number of	max. rel. deviation
	processes tested	$Comix \leftrightarrow MadGraph5$
Standard Model	60	$2.3 \cdot 10^{-10}$
Higgs Effective Field Theory	13	$4.3 \cdot 10^{-13}$
MSSM	401	$1.0\cdot10^{-10}$
Minimal Universal Extra Dimensions	51	$2.8 \cdot 10^{-12}$
Anomalous Quartic Gauge Couplings	16	$5.9\cdot10^{-12}$

- SHERPA is dedicated to becoming a state of the art event generator for lepton-lepton colliders
- \blacksquare Soft and Collinear photons are resummed in SHERPA via YFS This will be soon matched to fixed order calculations i.e $\rm NLO_{EW}$
- \blacksquare SHERPA is fully automated for $\rm NLO_{\rm EW}$ and $\rm NLO_{\rm QCD}$ calculations
- BSM simulations are also fully automate via UFO models
- Beam-Strahlung is also being implemented
- Underlying events such as $\gamma\gamma$ will be modelled in the future

The SHERPA 2.2 event generator framework

User Inputs	Matrix Elements	Parton Showers	Soft Physics	Interfaces/Outputs
Initial Beams • collider setup • PDFs (built-in, LHAPDF) • beam spectra	Matrix Element Generators • AMEGIC • COMIX • CS subtraction 1-loop Amplitudes	CS-Shower (default) • dipole shower • fully massive • QED splittings DIRE	Hadronisation • AHADIC: a cluster fragmentation model • interface to Pythia string fragmentation	Output Formats . HepMC . LHEF . Root Ntuple . Differences . Interfaces . CY+Fython ME access . MCgrid . Integration into ATLAS/CMS
Parameters/Models - FeynRules/UFO - couplings - masses - variations - shower settings - non-perturbative parameters	OpenLoops Pecola GoSam BLHA	hybrid dipole-parton shower algorithm - fully massive	Hadron Decays - decay tables for hadronic resonances - dedicated form-factor models, e.g. r, B, A - spin correlations	
Physics Process	Automated MC@NLO sty Multijet-merging algorith • based on truncated show • tree-level and one-loop m and MEPS@NLO • approximate electroweak NNLO QCD with parton show • selected processes only	YFS QED corrections partonic channels Underlying Event underlying Event interactions beam-remnant colours intrinsic transverse momentum	Code/Docu - HepForge - GitLab - Inline documentation sherpa.hepforge.org gitlab.com/sherpa-team/sherpa	