Atomistic modeling of surface evolution under strong electric fields

<u>Danny Perez</u>, Andrew Garmon, Timothy Germann, Gaoxue Wang, Frank Krawczyk

Motivating challenges

- Compact, low-cost, accelerators would benefit from high gradients
- These however lead to increase in RF breakdown
- Incidence of breakdown is well characterized, but microscopic causes are complex:
 - –Occurs at fields that are well below what needed of a clean flat Cu surface (~10 GV/m)
 - -Implies the formation of precursors that locally enhance the field before breakdown can occur

Key questions

- What are these precursors and how they form?
- What controls their formation rate?

Dolgashev, Tantawi, Higashi, Spataro, 2010

Key questions

 How does precursor formation couple with microstructure and composition?

Simakov, Dolgashev, Tantawi, 2018

Goals

Short-term goals:

-Demonstrate that the response of metal surfaces to external E can be quantum

• Long(er)-

calcula

-Include

–Underst microstr The goal is not to reach engineering scales, but to understand fundamental breakdown mechanisms and inform materials design

Inform the design of optimized material solutions

Levels of theory

Quantum description:

- Density functional theory (DFT)
- Explicit description of the electron gas
- Strengths:
 - Very accurate (~100 meV/atom)
 - First principles (few parameters, transferable)
- Weakness:
 - Very expensive (scales as N_{electrons}³)
 - Small systems (~few 100 atoms): cannot capture microstructure effects
 - Static or short dynamic simulations (~ps): cannot explicitly simulate surface evolution

Example of DFT results

Example of DFT results

Levels of theory

Classical description:

-Molecular dynamics (integration of classical EOM)

- Strengths:
 - -Reasonably accurate empirical description of Cu
 - Relatively fast
 - "Large" systems (>10⁶ atoms): can capture microstructural effects
 - "Long" simulations (milliseconds): can capture surface evolution
- Weakness:
 - -Scales are very limited compared to engineering scales
 - –How to include field effects?

Classical MD

In conventional MD, charges are typically implicit or fixed. In order to capture field effects, we need a **charge equilibration model**.

- Procedure:
 - -Choose an empirical Hamiltonian for the electronic energy
 - -Parameterize the Hamiltonian by fitting to quantum data
 - Assign charges so as to minimize the electronic Hamiltonian at the instantaneous position of the atoms

Training set

- Bulk atoms are non-informative of fields response. Want as much surface atoms as possible for quantum calculations
- Characterized 6 Cu small nanoclusters (30-68 atoms) for fields varying between -3 and 3 GV/m using DFT

• Fitted model on energies at highest fields (42 data points), the rest (174 data points) is used as validation

Electronic Hamiltonian

- 3 ingredients are essential:
 - Hardness: onsite charge repulsion
 - Polarizability: excess charges induced in vacuum, not on atoms
 - Intrinsic dipole: breaks the E,-E symmetry.

Electronic Hamiltonian

- $V = V_{Coulomb} + V_{Field} + V_{Self}$
- $V_{Self} = \sum_{i=1}^{N} b_i q_i + c q_i^2$ (c penalizes charge accumulation on atoms)
- $b_i = b N_{Neighbors,i}$ (electronegativity depends on atomic environment)
- Virtual sites for excess charge located 1A away from the atoms, pointing away from the neighbors.
- Only 2 adjustable parameters (b,c)

Validation: hardness

Validation: hardness, polarizability

Validation: hardness, polarizability, intrinsic dipoles

Intrinsic dipole

Los Alamos National Laboratory

- At very high fields (~10 GV/m), nano-pyramids spontaneously form, leading to local field enhancement and evaporation/field emission
- Can this mechanism spontaneously create breakdown precursors?
 DC models suggest that growth should occur on >h timescales at ~100 MV/m. >1000h in pulsed conditions.
- Might play a role, but not the whole story, as breakdown affected by bulk mechanical properties
- This mechanism can amplify short wavelength structures formed by some other mechanism

Future work: nature of the precursors

- Clear indications that magnetic fields are crucial
- Pulse heating is known to be a factor

Dolgashev, Tantawi, Higashi, Spataro, 2010

 Will explore microstructural changes induced by thermal fatigue and their coupling with E and with the microstructure

Conclusion

- Classical models parameterized from quantum calculations can describe the energetics of metals under high fields
- In critical conditions, we see the spontaneous formation of nanopyramids and the emission of atoms (i.e., "breakdown")
- Still have to simulate the growth of the precursors
- Atomistic simulations face a challenge of scales, but can provide unique insights

Suggestions are welcome!