Technology Development of Highgradient C-band based Accelerators

<u>Frank L Krawczyk*</u>, Evgenya Simakov, Danny Perez, Gaoxue Wang, Andrew Garmon, Mark Kirshner, Joe Bradley, **LANL** Emilio Nanni, Sami Tantawi, Diana Gamzina, **SLAC** James Rosenzweig, Atsushi Fukasawa, **UCLA**

* fkrawczyk@lanl.gov

rticle Beam Physics Laborator

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

Los Alamos

NATIONAL LABORATORY

EST. 1943

Outline

Work completed since the last meeting

- Fully funded 3-year program (until Sept. 2022)
- Established molecular dynamics tools for RF-breakdown studies
- Established relevance of C-band as best frequency for LANL applications
- Acquisition and installation of C-band klystron and test-stand
- Present and future plans
- Develop better understanding of RF-breakdown (see talk by Danny Perez)
- Develop C-band structures for gradients at or above 100 MV/m (β =1.0)
 - Better materials and fabrication techniques
 - Cryo-cooled operation at 77K
- Develop C-band structures for proton applications (e.g. pRad)
 - Energy and (β) range: 140 MeV to 20 GeV (0.5 to 1.0)
 - Moderate gradient up to 40 MV/m
- Develop RF-source technology to higher peak power, flexible RF-pulse format

Molecular Dynamics Simulation Tools

- Most accurate
 - Density Function Theory (DFT), quantum physical approach
 - Slow, only small ensembles of particles, not good for dynamic effects
- Manageable
 - Classical Molecular Dynamics (MD) with modifications
 - Faster, more relevant ensemble sizes, multiple grains, dynamics up to a few μs
- What is missing
 - Electromagnetic (EM) Forces are insufficient to create breakdown precursors
 - EM model does not obviously lead to "low" breakdown limits
- Effects that have to be included
 - Thermal Fatigue
 - Plasma forming at nano-tips (e.g. Flyura Djurabekova, Univ. of Helsinki)
 - Propagation of defects to the surface (e.g. Yinon Ashkenazy, Hebrew Univ. of Jerusalem)

C-band Relevance for LANL Applications

- RF performance metrics for RF structures (efficiency, gradient and multi-bunch decoupling) favor higher frequency (**C** and X).
- Coupling between an RF structure and the transported beams (good and bad wake fields) favor lower frequency (S and C).
- Ease of fabrication and RF-transport losses also favor the lower range (S and **C**).
- C-band (5.712 GHz) is the only established frequency that has favorable properties on all these criteria.

article Beam Physics Laborato

a/λ = 0.24	Units	S-band	C-band	X-band
 Shunt Impedance	MΩ/m	47	66	94
Longitudinal Wakes	V/pC	11.7	16.1	22.1
Energy Change	@ 1 GeV	1.1%	1.5%	3.4%
Transverse Wakes	V/pC/m	12.2	67.1	366.3
Deflection at 1 μm	kV	0.12	0.64	3.50

a/λ = 0.10	Units	S-band	C-band	X-band
Shunt Impedance	MΩ/m	85	120	170
Longitudinal Wakes	V/pC	26.5	36.4	50.4
Energy Change	@ 1 GeV	2.5%	3.5%	7.7%
Transverse Wakes	V/pC/m	155	835	4420
Deflection at 1 μ m	kV	1.5	8.0	67.4

	a/λ = 0.04	Units	S-band	C-band	X-band
2	Shunt Impedance	MΩ/m	86	121	172
Ļ	Longitudinal Wakes	V/pC	45.8	64.3	90.5
С	Energy Change	@ 1 GeV	4.4%	6.1%	13.8%
5	Transverse Wakes	V/pC/m	306	1683	9037
	Deflection at 1 μ m	kV	2.93	16.1	86.4

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

C-band Engineering Research Facility (CERF-NM)

- Development of C-band technology is a high LANL priority
- DDSTE and the ALD for Physical Sciences invested \$1.3M into purchase/installation of a 50 MW peak power klystron
- Klystron supports our 3-year effort for sample and cavity testing
- Complimentary efforts, mostly in collaboration with UCLA and SLAC (e.g. on injector, diagnostics, RFsources, C-band RF-components) to develop facility into electron beam test accelerator
- Collaborative proposals on compact FELs, cryogenically cooled RF-structures, reduced βstructures for medical, isotope production or pRad

Slide 5

High-Gradient Structures for Electron Beams

- Material Science effort
 - better understanding of RF-breakdown
 - Are there better copper alloys with lower RF-breakdown probability?
- RF-structures

- Design and test reference structures from regular copper (SW, waveguide manifold coupling)
- Test cavity for sample testing we try to do more than DC testing
- Develop new Rf-structures based on cryo-cooling copper (77K)
- Advanced manufacturing
 - Implement low-temperature machining, forming, joining and cleaning techniques
 - Fabrication infrastructure: methods that do not compromise the properties of source materials
 - In-house fabrication of newly developed RF-resonators

High Gradient Structures for Proton Beams

- Leverage Material Science and Advanced Manufacturing work
- Structure and beam dynamics simulations to determine suitable start energy for C-band structures – decide velocity grading scheme
- Final pRad concept might have a S-band front end
- Test reduced β -structures in collaboration with SLAC
- Design, build and test multi-cell resonators
- Optional beam tests at LANSCE
- Develop technology use cases for technology
 - pRad
 - Isotope production
 - Medical accelerators

article Beam Physics Laboratol

Concepts for new C-band Source Technology

- Standard C-band klystron configurations are limited
- We need higher power, flexible pulse formats and longer pulses
- Path to MBKs has challenges (e.g. over-moding)
- Plan to develop proposal on collaborative effort with SLAC
 - Better modulator/HV technology
 - High current density cathodes (Nanocomposite Scandate Tungsten (NST) cathodes)
 - Multi-beam klystron development

3-year Effort

PBPU

/ ۷ ۸ 🤇

Particle Beam Physics Laboratory

	FY 2020	FY 2021	FY 2022	
Materials Science	Tools/Breakdown Study Thermal effects/defects	Design copper alloys	Design copper alloys Refine models	
RF Engineering	Ingineering Benchmark resonators β=1 Cells from new alloys Sample Tests β<1 Cells from new alloys Cryo-cooling Cryo-cooling		β=1 multi-cell resonators β<1 multi-cell resonators	
Advanced Manufacturing	Develop methods and tools manufacture samples	build single cell resonators evaluate methods	build multi-cell resonators use best methods	
Experiments	Condition klystron Condition test stand Test cavities for SLAC/LANL	Test single cells Upgrade RF-power Tests for collaborators	Test multicells cells Tests for collaborators	
Extended technologies	Collaboration with UCLA (cFEL, injector)	New RF sources Injector install	First beam experiments	

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

Acknowledgements

- LANL DDSTE, ALDPS (infrastructure investment)
- LANL Accelerator, Theory and Fabrication divisions (multidisciplinary approach)
- LANL LDRD program
- RF source group at SLAC
- PSI SwissFEL

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA