

Sensitivity of CLIC and the ILC to Stray Magnetic Fields and Mitigation with Passive Shielding

C. Gohil
CERN, Geneva, Switzerland

Acknowledgements: N. Blaskovic Kraljevic, B. Heilig, D. Schulte, P. N. Burrows

International Workshop on Future Linear Colliders (31/10/19)

Contents

- Stray Magnetic Field Tolerances:
 - CLIC
 - ILC
- Passive Shielding
 - Shielding Mechanisms
 - Low Amplitude Magnetic Fields
 - Measurements
 - Iron
 - Mu-Metal
- Conclusions

Stray Magnetic Field Tolerances

- Simulations were performed with PLACET.
- A grid of dipoles was inserted in to the lattice.
 - Dipole spacing was 1 m.
- Dipoles exerted the integrated kick over the 1 m spacing from the stray field.
- The dipoles kick the beam vertically.
- Tolerances calculated as the the amplitude that results in 4% emittance growth of the end of the section.
 - This is equivalent to 2% luminosity loss.
- 1.2 nm emittance growth budget in CLIC, 1.4 nm emittance growth budget in the ILC.

CLIC at 380 GeV

Homogeneous spatial distribution:

	Tolerance [nT]
Long Transfer Line	27
Main Linac	540
Beam Delivery System	1.3

- Tightest tolerance **O(1 nT)** in the BDS.
- ML is the least sensitive.

Sinusoidal spatial distribution:

ILC

 Superconducting cavities in the ML shield the beam from stray fields.

Technical Design Report:

7.4.2 Stray Fields

Studies have found that fields at the level of $2.0\,\mathrm{nT}$ can lead to beam jitter at the level of $0.2\sigma_y$ [142]. This is considered acceptable since the orbit feed-forward corrects most of this beam motion. Measurements [143] indicate that $2\,\mathrm{nT}$ is a reasonable estimate for the stray-field magnitude in the ILC. Emittance-growth considerations also place limits on the acceptable stray fields, but these are significantly higher.

- K. Kubo, "Rough Estimation of Effects of Fast-Changing Stray Field in Long Transport of RTML", ILC-NOTE-2007-008, ILC-Asia-2006-06A:
 - White noise stray field in the RTML.
 - Tolerance for $0.2\sigma_y$ beam jitter (2% luminosity loss):
 - $B_{RMS} = 2$ nT without feed-forward correction.
 - $B_{RMS} =$ **7.5 nT** with feed-foward correction.

 J. Frisch, et al., "Sensitivity to Nano-Tesla scale stray magnetic fields", SLAC-TN-04-041 (2004):

NLC BDS:

- Homogeneous stray field tolerance for $0.5\sigma_y^*$ beam jitter:
 - B = 8.7 nT.
- Sinusoidal stray field at worst wavelength (790 m) tolerance for $0.5\sigma_{\rm v}^*$ beam jitter:
 - B = 0.5 nT.

- Previous tolerances were calculated analytically.
- Using an ILC (500 GeV) simulation in PLACET:
 - Homogeneous spatial distribution:

	Tolerance [nT]
e ⁻ Return Line	31
Beam Delivery System	7.3

Sinusoidal spatial distribution:

Stray Field Measurements

- Both CLIC and the ILC have nT sensitivities:
 - CLIC: O(0.1 nT)
 - ILC: O(1 nT)
- What is the expected level of stray fields to be experienced by the beam?
 - Need to know both the temporal and spatial variation.
 - Another talk: "Measurements to Characterise Stray Magnetic Fields for CLIC".
 - Typical ambient magnetic fields measured in accelerator environments is O(100 nT).
 - Mitigation will be needed!
- Assuming the worst, is it possible to shield stray fields to a 0.1 nT level?

Passive Shielding

Magnetic Shielding Mechanisms

Flux-Shunting

Eddy-Current Cancellation

Magnetic Shielding Mechanisms

- Which of the mechanisms is dominant depends on:
 - Material properties:
 - Electrical conductivity
 - Magnetic permeability
 - Properties of the external magnetic field:
 - Frequency
 - Amplitude implicitly through the permeability
- Shielding factor also depends on the shield geometry: radius and thickness.

Shielding Low Amplitude Magnetic Fields

Flux-Shunting

- Low frequency shielding can only occur via flux-shunting.
- Relies on reorienting magnetic dipoles in the material:
 - Is there a minimum amplitude threshold?
- Low amplitude behaviour implicit through the permeability, μ.

Shielding Low Amplitude Magnetic Fields

• The behaviour of μ for low amplitude magnetic fields is governed by Rayleigh's law:

$$\mu(H) = \mu_i + \nu H$$

- The permeability tends to the initial permeability, μ_i , for low amplitude fields.
- c.f. B. D. Cullity, C. D. Graham, "Introduction to Magnetic Materials", John Wiley & Sons, 2011.

Shielding Low Amplitude Magnetic Fields

 Decreasing permeability observed by others working on magnetic shielding for accelerator applications:

K. Tsuchiya, et al.,
 "Cryomodule
 Development For
 Superconducting RF Test
 Facility at KEK", Proc.
 EPAC'2006.

 Need measurements at lower fields.

Shielding Measurements

- Two cylinders made of different materials were tested:
 - Soft iron.
 - Mu-metal.
- Cylinder geometry:
 - Inner diameter = 5 cm
 - Thickness = 1 mm
 - Length = 0.5 m

Magnetic Field Sensor

- Mag-13 sensor produced by Bartington Instruments, UK:
 - Frequency range: DC-3 kHz
 - Noise at 1 Hz: 7 pT/√Hz
- ±0.5 V 24-bit National Instruments DAQ (NI 9238).

Measurement Setup

Measurements were performed with a set of Helmholtz coils:

Measurement Setup

- Measurements were performed with a set of Helmholtz coils:
 - AC magnetic field was excited in the x-direction (transverse to shield).
 - Coils provided a very uniform field:

Sensor was moved in the x-direction.

LHC Beam Screen

- Typical accelerator beam pipe:
 - Consists of 1 mm steel and 50-100 um inner copper coating.

No effect below a 1 kHz.

Soft Iron

Transfer function improves with external field amplitude!

Soft Iron

External Magnetic Field [uT]

- Transfer function tends to a 'low-field' value.
 - I.e. shielding does not go to zero as the external field is reduced.

Transfer Function

- For cylindrical shields the transfer function can be calculated analytically:
 - J. F. Hoburg, "A Computational Methodology and Results for Quasistatic Multilayered Magnetic Shielding", IEEE Transactions on Electromagnetic Compatibility, vol 38, 1996.

Soft Iron

Using this model a permeability can be fitted to each transfer function:

- The advertised initial permeability is 300-500.
- Much lower than the 'catalogue' permeability usually quoted.

Soft Iron

- How much iron would be needed?
 - Shielding roughly scales linearly with thickness.
 - 1 mm: TF = 0.2 at low frequencies.
 - Assuming 10 nT outside the shield, 2 cm needed to have 0.1 nT inside!
- Need a material with a better permeability.

Mu-Metal

This is an iron-nickel alloy often used for magnetic shielding.

Mu-Metal

- Initial permeability of ~50,000.
- Could make a very effective shield.

Mu-Metal

Exciting a 0.1 uT magnetic field outside:

Mu-Metal Foils

Annealed mu-metal foils:

- Scaling roughly agrees $\frac{D}{t}.$ with TF $\propto \frac{T}{t}$.
- TFs consistent with permeability O(5,000).
- Permeability likely to have been damaged from deformation.
- This is reversed by reannealing.

Conclusions

- CLIC and the ILC have nT level tolerances.
- Accelerator environments typically have O(100 nT) stray fields.
 - Need shielding!
- Mu-metal can be used to shield to 0.1 nT levels.
- . Scaling of TF $\propto \frac{D}{t}$ for mu-metal has been verified.
- Deformation can damage the permeability.