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Stray Magnetic Field
Tolerances




Stray Field Tolerances

Simulations were performed with PLACET.
A grid of dipoles was inserted in to the lattice.
e Dipole spacing was 1 m.

Dipoles exerted the integrated kick over the 1 m spacing from
the stray field.

The dipoles kick the beam vertically.

Tolerances calculated as the the amplitude that results in 4%
emittance growth of the end of the section.

e This is equivalent to 2% luminosity loss.

1.2 nm emittance growth budget in CLIC, 1.4 nm emittance
growth budget in the ILC.
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CLIC at 380 GeV
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CLIC Stray Field Tolerances

* Homogeneous spatial distribution:

Tolerance [nT]

Long Transfer Line 27
Main Linac 540
Beam Delivery System 1.3

* Tightest tolerance O(1 nT) in the BDS.
e ML is the least sensitive.
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CLIC Stray Field Tolerances

e Sinusoidal spatial distribution:
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e Superconducting cavities in the ML shield the beam from stray
fields.



ILC Stray Field Tolerances

e Technical Design Report:

7.4.2 Stray Fields

Studies have found that fields at the level of 2.0nT can lead to beam jitter at the level of 0.20 [142].
This is considered acceptable since the orbit feed-forward corrects most of this beam motion. Mea-
surements [143] indicate that 2nT is a reasonable estimate for the stray-field magnitude in the

ILC. Emittance-growth considerations also place limits on the acceptable stray fields, but these are
significantly higher.



ILC Stray Field Tolerances

o K. Kubo, “Rough Estimation of Effects of Fast-Changing
Stray Field in Long Transport of RTML”, ILC-
NOTE-2007-008, ILC-Asia-2006-06A:

 White noise stray field in the RTML.

o Tolerance for 0.26y beam jitter (2% luminosity loss):

o Bpy = 2 nT without feed-forward correction.

e Dbpye = 7.5 NnT with feed-foward correction.
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ILC Stray Field Tolerances

e J. Frisch, et al., “Sensitivity to Nano-Tesla scale stray
magnetic fields”, SLAC-TN-04-041 (2004):

* NLC BDS:

« Homogeneous stray field tolerance for ().50;X< beam jitter:

e B=28.7nT.

e Sinusoidal stray field at worst wavelength (790 m)
tolerance for 0.50;’< beam jitter:

e B=0.5nT.
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ILC Stray Field Tolerances

* Previous tolerances were calculated analytically.

e Using an ILC (500 GeV) simulation in PLACET:
e Homogeneous spatial distribution:

Tolerance [nT]

e~ Return Line 31

Beam Delivery System 7.3
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ILC Stray Field Tolerances

e Sinusoidal spatial distribution:
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Stray Field Measurements

e Both CLIC and the ILC have nT sensitivities:
e CLIC: O(0.1 nT)
e |ILC: O(1 nT)

* What is the expected level of stray fields to be experienced by the beam?
* Need to know both the temporal and spatial variation.

* Another talk: “Measurements to Characterise Stray Magnetic
Fields for CLIC”.

e Typical ambient magnetic fields measured in accelerator environments
is O(100 nT).
e Mitigation will be needed!

 Assuming the worst, is it possible to shield stray fields to a 0.1 nT level?
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Passive Shielding



Magnetic Shielding
Mechanisms

O

Flux-Shunting
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Eddy-Current Cancellation



Magnetic Shielding
Mechanisms

e Which of the mechanisms is dominant depends on:
 Material properties:
e Electrical conductivity
e Magnetic permeability
e Properties of the external magnetic field:
e Frequency
e Amplitude - implicitly through the permeability

e Shielding factor also depends on the shield geometry:
radius and thickness.
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Shielding Low Amplitude
Magnetic Fields

O

Flux-Shunting

* Low frequency shielding can
only occur via flux-shunting.

* Relies on reorienting magnetic
dipoles in the material:

* |sthere a minimum
amplitude threshold?

| ow amplitude behaviour
implicit through the

permeability, u.
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Shielding Low Amplitude
Magnetic Fields

* The behaviour of y for low amplitude magnetic fields is
governed by Rayleigh’s law:

e The permeability tends to the initial permeability, u,, for low
amplitude fields.

e c.f. B. D. Cullity, C. D. Graham, “Introduction to Magnetic
Materials”, John Wiley & Sons, 2011.
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Shielding Low Amplitude
Magnetic Fields

 Decreasing permeability observed by others working on
magnetic shielding for accelerator applications:
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Shielding Measurements

 Two cylinders made of different materials were tested:
e Soft iron.
* Mu-metal.

e Cylinder geometry:
* |nner diameter = 5 cm
e Thickness =1 mm
e Length=0.5m
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Magnetic Field Sensor

Mag-13 sensor produced by Bartington Instruments, UK:
* Frequency range: DC-3 kHz
 Noise at 1 Hz: 7 pT/{JHz

+0.5 V 24-bit National Instruments DAQ (NI 9238).
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Measurement Setup

* Measurements were performed with a set of Helmholtz coils:

74 cm

Shield
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Measurement Setup

Measurements were performed with a set of Helmholtz coils:

 AC magnetic field was excited in the x-direction
(transverse to shield).

* Coils provided a very uniform field:
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LHC Beam Screen

* Typical accelerator beam pipe:

e Consists of 1 mm steel and 50-100 um inner copper
coating.
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e No effect below a 1 kHz.
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Soft Iron
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* Transfer function improves with external field amplitude!
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Soft Iron
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* Transfer function tends to a ‘low-field’ value.
e |.e. shielding does not go to zero as the external field is reduced.
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Transfer Function

* For cylindrical shields the transfer function can be calculated
analytically:

e J. F. Hoburg, “A Computational Methodology and Results
for Quasistatic Multilayered Magnetic Shielding”, IEEE
Transactions on Electromagnetic Compatibility, vol 38,
1996.
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Soft Iron

* Using this model a permeability can be fitted to each transfer
function:
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Soft Iron

e How much iron would be needed?
e Shielding roughly scales linearly with thickness.
e 1 mm: TF = 0.2 at low frequencies.

e Assuming 10 nT outside the shield, 2 cm needed to
have 0.1 nT inside!

* Need a material with a better permeability.
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Mu-Metal

* This is an iron-nickel alloy often used for magnetic shielding.
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Relative Permeability
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Initial permeability of
~50,000.

Could make a very
effective shield.



Mu-Metal

Exciting a 0.1 uT magnetic field outside:
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Mu-Metal Folls

e Annealed mu-metal foils:
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Scaling roughly agrees

with TF o —.
[

TFs consistent with
permeability O(5,000).

Permeabillity likely to have
been damaged from
deformation.

This is reversed by re-
annealing.



Conclusions

CLIC and the ILC have nT level tolerances.

Accelerator environments typically have O(100 nT) stray fields.
* Need shielding!

Mu-metal can be used to shield to 0.1 nT levels.

Scaling of TF o« — for mu-metal has been verified.
[

Deformation can damage the permeabillity.
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