

Machine Learning for Sextupole Surrogate Models of the CLIC **Final-Focus System**

International Workshop on Future Linear Colliders (LCWS19) October 28—November 1, 2019 Sendai, Japan

Acknowledgements: Chetan Gohil, Daniel Schulte

Jim Ogren

Compact Linear Collider (CLIC)

The beam delivery system - Last 2.2 km of the main linacs

- Collimation section _
- Final-focus system (last 780 m)

The 380 GeV CLIC FFS

The final-focus system (FFS):

- Local chromaticity scheme
- 780 m total length
- 20 quadrupole magnets
- 22 Beam-position monitors (BPMs)
- 6 sextupole magnets
- 2 octupole magnets
- 385 m bending magnets

Norm. emittance (end of linac) $\gamma \epsilon_x / \gamma \epsilon_y$	[nm]
Norm. emittance (IP) $\gamma \epsilon_x / \gamma \epsilon_y$	[nm]
Beta function (IP) β_x^* / β_y^*	[mm]
Target IP beam size σ_x^* / σ_y^*	[nm]
Bunch length σ_z	$[\mu m]$
rms energy spread δ_p	[%]
Bunch population N_e	$[10^9]$
Number of bunches $n_{\rm b}$	
Repetition rate $f_{\rm rep}$	[Hz]
Luminosity $\mathcal{L}_{\text{total}}$	$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$
Peak luminosity $\mathcal{L}_{1\%}$	$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$

Jim Ögren

LCWS2019 Sendai, Japan

Luminosity calculation:

- N =particles per bunch
- n_b = number of bunches
- f_r = repetition rate
- σ = beam size at collision point
- H = correction factor (hour glass effect, disruption)

$$L = H \frac{N^2 n_b f_r}{\sigma_x \sigma_y}$$

Tuning simulations, static imperfections

- Single-beam: only half of FFS, beam mirrored at IP
- Transverse misalignments, rolls and magnetic strength errors
- Monte Carlo simulations. Goal: 90% of machines successfully tuned
- Tuning time is essential for collider performance

Static imperfections	Specified tolerance (rms error)	Elements		
Resolution	20 nm	BPMs		
Transverse misalignments	10 µm	BPMs, quadrupo multipoles		
Roll errors	100 µrad	BPMs, quadrupo multipoles		
Relative strength error	10-4	Quadrupoles multipoles		

Machine learning application?

First objective: create a surrogate model to replace computationally intensive simulations

Single imperfection: sextupole transverse offsets

- Sextupole transverse offsets
 - Big impact on luminosity -
- Different approaches
 - Orthogonal knobs -----
 - Random walk _
- Efficient tuning is crucial
- Simulations are time consuming
- Make a surrogate model \bullet
 - Analytical model?
 - Nonlinear system
 - Synchrotron radiation -
 - Beam-beam effect with large disruption -
 - Make use of machine learning?
 - Artificial neural networks?

Sextupole surrogate model

- Model sextupole transverse positions to Luminosity. Goal: fast estimator.
- Supervised, deep learning
- Artificial Neural Networks

Hidden layers

Data generation

- Tracking in PLACET, beam-beam in GUINEA-PIG
- Simulate perfect machine with sextupole transverse offsets (5, 10, 20 µm rms)
- 1 run = 10 random cases (less then 20 mins)10,000 jobs at the time
- Generated about 450,000 data points

Machine Learning:

- Deep learning with artificial neural networks
- TensorFlow and Python library Keras

Model training

- Loss function: e.g. mean square error
- Algorithm: *backpropagation of errors* (gradient descent) adjust weights to minimize loss
- Implemented in TensorFlow
- Python Keras library to interface
- Split data: training (80%), testing (20%)
- Testing data only used for model evaluation

Model training

Simple example:

```
import tensorflow as tf
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(12, activation='relu', input_shape=(x.shape[1],)))
model.add(tf.keras.layers.Dense(12, activation='relu'))
model.add(tf.keras.layers.Dense(12, activation='relu'))
model.add(tf.keras.layers.Dense(12, activation='relu'))
model.add(tf.keras.layers.Dense(12, activation='relu'))
model.add(tf.keras.layers.Dense(4))
model.compile(optimizer='adam', loss='mse', metrics=['mae'])
history=model.fit(x, y, epochs=400, batch_size=50, validation_split=0.1)
```

- Sequential model = feedforward network
- Dense layer = all nodes are connected to all nodes in the next layer
- Specify number of nodes in each layer and activation function
- Batch_size = number of data points in each iteration of backprogation
- 1 epoch = 1 loop over the full data set

Model training

Simple example:

```
import tensorflow as tf
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(12, activation='relu', input_shape=(x.shape[1],)))
model.add(tf.keras.layers.Dense(12, activation='relu'))
model.add(tf.keras.layers.Dense(4))
model.compile(optimizer='adam', loss='mse', metrics=['mae'])
history=model.fit(x, y, epochs=400, batch_size=50, validation_split=0.1)
```

- Sequential model = feedforward network
- Dense layer = all nodes are connected to all nodes in the next layer
- Specify number of nodes in each layer and activation function
- Batch_size = number of data points in each iteration of backprogation
- 1 epoch = 1 loop over the full data set

Model performance

	Luminosity			Vertical beam size		
	2 Layers	5 Layers	7 Layers	2 Layers	5 Layers	7 Layers
Mean(Rel_error) [%]	29.1	11.7	6.5	3.0	2.3	1.2
Std(Rel_error) [%]	62.4	20.1	11.1	3.5	2.8	2.2
90% less than [%]	64.7	27.4	15.8	6.7	5.1	2.6

- It seems difficult to get the mean error below 5
- A model in a more narrow range performs better
- Part of it comes from Luminosity uncertainty (~1%)
- Accuracy is not the most crucial aspect
- A model that correctly characterizes the behavior is very useful

Jim Ögren

Random walk algorithm

- ML model: 1000 iteration random walk tuning takes a few seconds \bullet
- Full-scale simulation: 1000 iterations random walk tuning takes ~8h
- Use ML model to optimize algorithm
- For each setting: 100 different random seeds, each tuned 100 times
- Random walk:
 - Select a subset out of the 12 DOF *
 - Make steps in random direction: ¥ gain*[-1, -0.5, 0.5, 1]

Jim Ögren

Full simulation

- Test random walk parameters on full simulation
- A few example

Compare with full simulation

- Tuning of the perfect machine with sextupole transverse offsets only
- Use the normal tuning knobs and fullscale tracking (100,000 macroparticles)
- At each step: evaluate luminosity from ML model as well and save to file
- To evaluate predictive performance, mean absolute percentage error (MAPE):

$$\frac{1}{N} \sum_{i=1}^{N} \left| \frac{y_i - \tilde{y}_i}{y_i} \right|$$

Quadrupoles and sextupole model

Extended model

- Sextupole transverse position and quadrupole transverse position
- 20 Quadrupoles, 12 sexupoles => 52 input parameters
- Train networks that map offsets to L, LP, σx, σy
- Same procedure as before
- Optimized random walk parameters on ML model

Compare with full simulation

Jim Ögren

Random walk simulation

- Moving quadrupoles and sextupoles
- At each step: evaluate luminosity from ML model as well
- ML model manages to capture the characteristics pretty well

Not always successful

- Model range limited \bullet
- Improvement on model \bullet
- Use more data ${ \bullet }$

Conclusions

- Deep learning and artificial neural networks
 - Trained sextupole surrogate model on a large set of simulation data -
 - Accurate in quite a large range
 - Model was cross-checked with full-scale simulations
- Tuning random walk hyperparameters
 - Model is very fast to evaluate
 - Scan over hyperparameters with a large set of examples
 - Model was useful and results were used in the full tuning simulation
- Extended model to include quadrupole offsets
 - Model worked quite well in a limited range but gave large discrepancies in some cases
 - Will try to improve model by training on more data -
- Future work
 - Include more imperfections
 - Testing other Machine Learning techniques
 - E.g. reinforcement learning

