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Compact Linear Collider (CLIC)
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The beam delivery system - Last 2.2 km of the main linacs 
- Collimation section 
- Final-focus system (last 780 m)

Footprint
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The 380 GeV CLIC FFS
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The final-focus system (FFS): 
- Local chromaticity scheme 
- 780 m total length 
- 20 quadrupole magnets 
- 22 Beam-position monitors (BPMs) 
- 6 sextupole magnets 
- 2 octupole magnets 
- 385 m bending magnets

L = H
N2nb fr
σxσy

Luminosity calculation: 
N = particles per bunch 
nb = number of bunches 
fr = repetition rate 
σ = beam size at collision point 
H = correction factor (hour glass effect, disruption)
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Tuning simulations, static imperfections
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Static 
imperfections

Specified tolerance 
(rms error) Elements

Resolution 20 nm BPMs

Transverse 
misalignments 10 μm BPMs, quadrupoles, 

multipoles

Roll errors 100 μrad BPMs, quadrupoles, 
multipoles

Relative strength 
error 10-4 Quadrupoles, 

multipoles

J. Ogren, A. Latina, R. Tomas and D. Schulte, Tuning of the CLIC 380 GeV Final-Focus 
System with Static Imperfections, CERN-ACC-2018-0055, CLIC-Note-1141.

• Single-beam: only half of FFS, beam mirrored at IP 
• Transverse misalignments, rolls and magnetic strength errors 
• Monte Carlo simulations. Goal: 90% of machines successfully tuned 
• Tuning time is essential for collider performance

Machine learning application? 
First objective: create a surrogate model  
to replace computationally intensive simulations



Jim Ögren LCWS2019 Sendai, Japan /16

Single imperfection: sextupole transverse offsets
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• Sextupole transverse offsets 
- Big impact on luminosity 

• Different approaches 
- Orthogonal knobs 
- Random walk 

• Efficient tuning is crucial 

• Simulations are time consuming 

• Make a surrogate model 
- Analytical model? 
- Nonlinear system 
- Synchrotron radiation 
- Beam-beam effect with large disruption 
- Make use of machine learning? 
- Artificial neural networks?
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Sextupole surrogate model
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• Model sextupole transverse positions to Luminosity. Goal: fast estimator. 
• Supervised, deep learning 
• Artificial Neural Networks Data generation 

• Tracking in PLACET, beam-beam in GUINEA-PIG 

• Simulate perfect machine with sextupole  
transverse offsets (5, 10, 20 μm rms)  

• 1 run = 10 random cases (less then 20 mins) 
10,000 jobs at the time 

• Generated about 450,000 data points 

Machine Learning: 
• Deep learning with artificial neural networks 

• TensorFlow and Python library Keras

S1x

S1y

S2x

S6y

L

Lp

σx

σy

Hidden layers
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Model training
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F. Chollet - ”Deep learning with Python”

• Adjust weights and biases for each  
node to minimize the loss function 

• Loss function: e.g. mean square error 
• Algorithm: backpropagation of errors  

(gradient descent) adjust weights to minimize loss 
• Implemented in TensorFlow 
• Python Keras library to interface  

• Split data: training (80%), testing (20%) 
• Testing data only used for model evaluation
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Model training
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• Sequential model = feedforward network 
• Dense layer = all nodes are connected to all nodes in the next layer 
• Specify number of nodes in each layer and activation function 
• Batch_size = number of data points in each iteration of backprogation 
• 1 epoch = 1 loop over the full data set

Simple example:
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Model training
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• Sequential model = feedforward network 
• Dense layer = all nodes are connected to all nodes in the next layer 
• Specify number of nodes in each layer and activation function 
• Batch_size = number of data points in each iteration of backprogation 
• 1 epoch = 1 loop over the full data set

Simple example:

Validation split to monitor overfitting
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Model performance
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Luminosity Vertical beam size
2 Layers 5 Layers 7 Layers 2 Layers 5 Layers 7 Layers

Mean(|Rel_error|) [%] 29.1 11.7 6.5 3.0 2.3 1.2
Std(|Rel_error|) [%] 62.4 20.1 11.1 3.5 2.8 2.2
90% less than [%]  64.7 27.4 15.8 6.7 5.1 2.6

• It seems difficult to get the mean error below 5-6% 
• A model in a more narrow range performs better 
• Part of it comes from Luminosity uncertainty (~1%) 
• Accuracy is not the most crucial aspect 
• A model that correctly characterizes the behavior is very useful

Luminosity Vertical beam size
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Random walk algorithm
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• ML model: 1000 iteration random walk tuning takes a few seconds 

• Full-scale simulation: 1000 iterations random walk tuning takes ~8h 
• Use ML model to optimize algorithm 

• For each setting: 100 different random seeds, each tuned 100 times 
• Random walk: 

✴ Select a subset out of the 12 DOF 
✴ Make steps in random direction:  

gain*[-1, -0.5, 0.5, 1]
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Full simulation
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Subset = 2

Subset = 6

Subset = 12

• Test random walk parameters on full simulation 
• A few example
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Compare with full simulation
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MAPE ~ 2%

MAPE ~ 2.5%

Simulation 
• Tuning of the perfect machine with 

sextupole transverse offsets only  

• Use the normal tuning knobs and full-
scale tracking (100,000 macroparticles)  

• At each step: evaluate luminosity from 
ML model as well and save to file  

• To evaluate predictive performance, 
mean absolute percentage error (MAPE):

1
N

N

∑
i=1

yi − ỹi

yi
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Quadrupoles and sextupole model
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Extended model 
• Sextupole transverse position and quadrupole transverse position  

• 20 Quadrupoles, 12 sexupoles   =>   52 input parameters 

• Train networks that map offsets to L, LP, σx, σy 

• Same procedure as before 

• Optimized random walk parameters on ML model

S1x
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Compare with full simulation
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MAPE ~ 5%

MAPE ~ 5.5%

Random walk simulation 
• Moving quadrupoles and sextupoles 

• At each step: evaluate luminosity 
from ML model as well  

• ML model manages to capture the  
characteristics pretty well
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Not always successful
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• In some cases: large discrepancy 

• Model range limited 

• Improvement on model 

• Use more data

Large discrepancies
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Conclusions
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• Deep learning and artificial neural networks 
- Trained sextupole surrogate model on a large set of simulation data   
- Accurate in quite a large range 
- Model was cross-checked with full-scale simulations 

• Tuning random walk hyperparameters 
- Model is very fast to evaluate 
- Scan over hyperparameters with a large set of examples 
- Model was useful and results were used in the full tuning simulation  

• Extended model to include quadrupole offsets 
- Model worked quite well in a limited range but gave large discrepancies in some cases 
- Will try to improve model by training on more data 

• Future work 
- Include more imperfections 
- Testing other Machine Learning techniques 
- E.g. reinforcement learning


