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Outline

Introduce Nb,Sn + standard Nb,Sn cavity
performance

High frequency Nb,Sn cavities

Progress in increasing Q

Progress in increasing E_ .

Outlook: gradients, 9-cells

Conclusion
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Properties of Nb;Sn

Higher critical temperature

= Operation at 4.2 K

Higher superheating field

= Double the limit of niobium

Parameter

Niobium

Nb;Sn

Transition temperature 9.2 K 18 K
Superheating field 219 mT 425 mT
Energy gap A/k,T. 1.8 2.2
AatT=0K 50 nm 111 nm
EatT=0K 22 nm 4.2 nm
GL parameter K 2.3 26
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Blue: tin
Red: niobium

1. Lower losses
2. Higher gradients
~90 MV/m



UHV Furnace

Cornell Nb;Sn Vapor Diffusion Furnace
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Optimized nucleation and temperature profile

S. Posen and M. Liepe, Phys. Rev. ST Accel. Beams 15, 112001 (2014).
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“Wuppertal” configuration, i.e., with secondary heater for the tin source



Nb,Sn Coatings

NbsSn form§ 2 ‘ Before Coating
polycrystalline layer on i

the surface of the

niobium

After Coating
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Comparison to Niobium

o ® Conventional niobium cavity at 4.2 K
e Nb,Sn cavity at 4.2 K
.Mmo e0® Cumtos @ coep o
1074 20x more
3 efficient than Nb
at 4.2 K
10° and 1.3 GHz!
..oooo ©00 © 000 0 0 0 0 ¢ o
L L
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Accelerating gradient (MV/m)
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* HighQat4.2K

— More efficient
* Lower dynamic load

— Longer pulsed operation

e Couldrunat4.2K
— Simplify cryomodule
* Lower static load

— Simplify cryogenic
system




JLAB Nb;Sn Coating System
..ggf_f/-egon Lab

“Siemens” configuration, i.e., no

secondary heater for the tin source
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Fermilab Nb,;Sn Coating System

JE i
Sam Posen af Fermilab
DA A = 0 D - ACE
N or : - () E O '
¥ 21010
n source 1. ' ___
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“Wuppertal” configuration, i.e., with
secondary heater for the tin source
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* Very reproducible performance
» ~4K operation with unprecedented Q >101° at typical CW operating fields
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cryogenic AC cooling power [kW/active meter]

Cryo-Efficiency

=== 1 3 GHz Niobium baseline at 2K (Q=2*10"? at 2K; 800 W/W cryo efficiency)
¢ 1.3 GHz NbBSn at 4.2K, current (200 W/W cryo efficiency)

2 4

r IR T B

6

Accelerating gradient E__  [MV/m]

Ryan Porter LCWS 2019

¢ ¢

8

3 x efficient than
clean niobium!
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cryogenic AC cooling power [kW/active meter]
N

Cryo-Efficiency

—
N

===1.3 GHz Niobium baseline at 2K (Q=2*1010 at 2K; 800 W/W cryo efficiency)
¢ 1.3GHz NbSSn at 4.2K, current (200 W/W cryo efficiency)

m 2.6 GHz NbSSn at 4.2K, current (200 W/W cryo efficiency)

2.6 GHz efficiency
just as good!

2 4 6 8 10 : 12 14 16 18
Accelerating gradient Eacc [MV/m]
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High Frequency Nb,Sn Cavities
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High Frequency Nb,Sn

Q vs E for Different Frequencies of Nbssn Cavity
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Higher frequency -> Smaller cavities-> Material savings
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cryogenic AC cooling power [kW/active meter]
N

Cryo-Efficiency
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===1.3 GHz Niobium baseline at 2K (Q=2*1010 at 2K; 800 W/W cryo efficiency)
¢ 1.3GHz NbSSn at 4.2K, current (200 W/W cryo efficiency)

m 2.6 GHz NbSSn at 4.2K, current (200 W/W cryo efficiency)

2.6 GHz efficiency
just as good!
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Accelerating gradient Eacc [MV/m]
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Breaking down the Q
Surface resistance at 4.2 K and 10 MV/m

Trapped flux _|: Ambient fields
Thermal gradients

16 nQ

“Double Gap”

BCS Resistance

0 nQ
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Breaking down the Q

Surface resistance at 4.2 K and 10 MV/m
16 nQ

_|: Ambient fields
Fhermal-gradients

“Double Gap”

Good magnetic shielding
can eliminate

BCS Resistance

0 nQ
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“Double Gap”

* “BCS” resistance shows two slope behavior

e Cause still under investigation:
— Well fit for “2-gap” BCS . Rgcs for 2 Gaps (3 MV/m)

* Multiple regions of “Sn depleted” 2.6 GHz
Nb,Sn?

— Dirty surface layers?

-
o
o]

e Good news:

— Removing will increase Q; 2-gap fit:
* Qe asy~> 9-10° Resc = (1-P)'Rgcsq + P Rges:

-
o
(=]

BCS Resistance (Q)

10'10
. 10 1/5 14 135 1/3 1125 A 12 118
* Qi36H, 42k 2:3:10

-1
- 3.5-10%° with good magnetic shielding VT (K)
Ro ~ 5.5 nQ (from trapped magnetic flux)
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Increasing E_ .
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Limitations in quench field

Nb,Sn cavities consistently quench at fields between
14 and 18 MV/m in CW operation

14 MV/m
5
451
The superheating .
[ E .
field suggests we 3 st 18 MV/m
can achieve fields 528
up to 96 MV/m! 5.l
A
0.5
° 0 2I0 4I0 60 8IO 1 (|)0 120

Quench field (mT)
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T-Map board

Ryan Porter

LCWS 2019

Niobium
surface

Thermal
paste

T-Map
sensor

— "\ II

\ Pogo stick

Connector
leads



Localised quench
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What could be at fault?
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Near quench behavior

 Measure temperature of sensor near the
guench point as field is increased

Maximum field 1595877 MV/m, Trace 1
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e Sudden jumps in temperature
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Near quench behaviour

Power on
Power off

- The sudden nature of these

iumps and hysteresis

Conclusion:

Quench caused by vortex entry, likely at grain boundary
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Cavity Autopsy — Anything on Surface?

* Cut out this region and examined with microscopy
* Nothing obvious except Nb grain boundary cliff

— Rough Surface . . ,Nb3"Sn surface

/

®

’ ij_b 'subst'rate grain

Tk  boundary?,. ..

Cornell - NSF DMR-1120296
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Relative Occurrence

Surface Roughness and Quench Fields

Surface Roughness:

* Rough surface = increased magnetic field on some surfaces

— Quench field decreased by 1/3 (?)
* Poor grain boundary geometry can decrease magnetic flux entry

barrier

— A. R. Pack, M. Transtrum (BYU): SRF'19: MOP017

Grain boundary geometry/roughness lowers quench field

| N I‘ |

Enhancement Factor (H,ygn/Hsmootn)
31/10/2019
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Surface Polishing

Developing surface treatments to reduce surface
roughness

Early result: Oxypolishing halves roughness and
surface field enhancement with 800 nm removal

Hlstogram of H- F|eld Enhancement Factor

ASD versus Amount of Oxipolish 014 y
0161 , ; y
— Unetched Nb,Sn P .Unetched Nb,, sn Y %
0.14/| —6 Passes (~200 nm) Pt 0.12+ 24 Passes of OXIPOIiSh ’ ’ E |eCt ro ﬁo ll S h I ng
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rough = 'smooth
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Why is Nb,Sn Rough?

* Nb;Sn roughness comes from

growth

— Bad Sn nucleation -> rough surface
— Good Sn nucleation -> smooth surface

31/10/2019
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800C 500 C

3875 C

Nb,Sn Growth:




Sn Electroplating

Zeming Sun (Cornell):

* Electroplate Sn onto Nb before heat
treatment

— > Grow smoother Nb,Sn

Uniform water
heating
environment

31/10/2019 Ryan Porter LCWS 2019

Sn Plated Nb




Sn Electroplating

Sn,Cl Nucleation “Sn Plating Nucleation”

Conclusion:
Sn plating nucleation 5 x roughness reduction!

Image Pixel Size =4.663nm Date 11 0 nm
Width = 5.000 gm Time :14:52:55 e l

Next step: Grow entire cavity using Sn plating
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Outlook
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Nb,Sn Outlook: Making Great Progress!
* Sam Posen (FNAL) reached 22 MV/m in CW operation (Nb,Sn world record)!

* Pulsed operation can reach 25 MV/m
* Does not (yet) reach ILC spec. but reaches old TESLA spec.

10" | | World record CW gradient for
\‘.'N.' Nb;Sn accelerator cavities!

OO 10101
20 MV/m at4.4 kK
S. Posen
® 44K|
AF Fermllab ¢ 20K
10 0 5 10 15 20 25

acce

Ref: S. Posen, “Frequency Dependence Studies of Nb;Sn
Cavities,” presented at TTC 2019, Vancouver, Canada, Feb.

2019
31/10/2019
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9-Cell Cavity Work at Fermilab

 Sam Posen (Fermilab) completed a first coating of a 9-cell cavity
— Real cavity that could be put in cryomodule
_~ ~ 9
« E, ~10.5MV/m, Q~8(10°at4.4K! )
¢ First attempt: EXDECt even better results SOOF\! * Ferm I Iab
11
10 ' - . o .
0 (0000 Mo g, o <1.5K . e ‘\ f
g, 5 44K "Q
. 1 . .\,-.
DDDDDD 3¢ Fermilab |
1 Cavity was not field
flatness tuned nor
o waf flatness checlfed
o 10"} | e
after these steps.
at quench
N b3Sn-coated Includes correction
9-cell 1.3 GHz 1 for stainless steel
cavity TB9ACCO14 flanges 2x0.8 nQ Real cavity (e.g.
L HOM hooks, NbTi
109 - L ' ' ' flanges)
0 2 4 6 8 10 12
E  [MV/m] Ref: S. Posen et. al., “Nb,Sn at Fermilab: Exploring
ace Performance,” in Proc. of SRF2019, Hamburg, Germany,
July 2019
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Conclusions

e 3 x more efficient than clean Nb
— Can further double efficiency
— Lower dynamic load

* 4.2 Koperation
— Lower static load
— Simpler cryogenics system

e 2.6 GHz cavity just as efficient
— Smaller cavities -> Lower Cost

* Canreach 23 MV/m CW (ENAL)
* Canreach 25 MV/m pulsed (Cornell)

Reducing surface roughness is a critical next step to improve quench fields
— Can grow smoother Nb,Sn with Sn plating
— Only need 25% increase in E___ for ILC operating spec
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