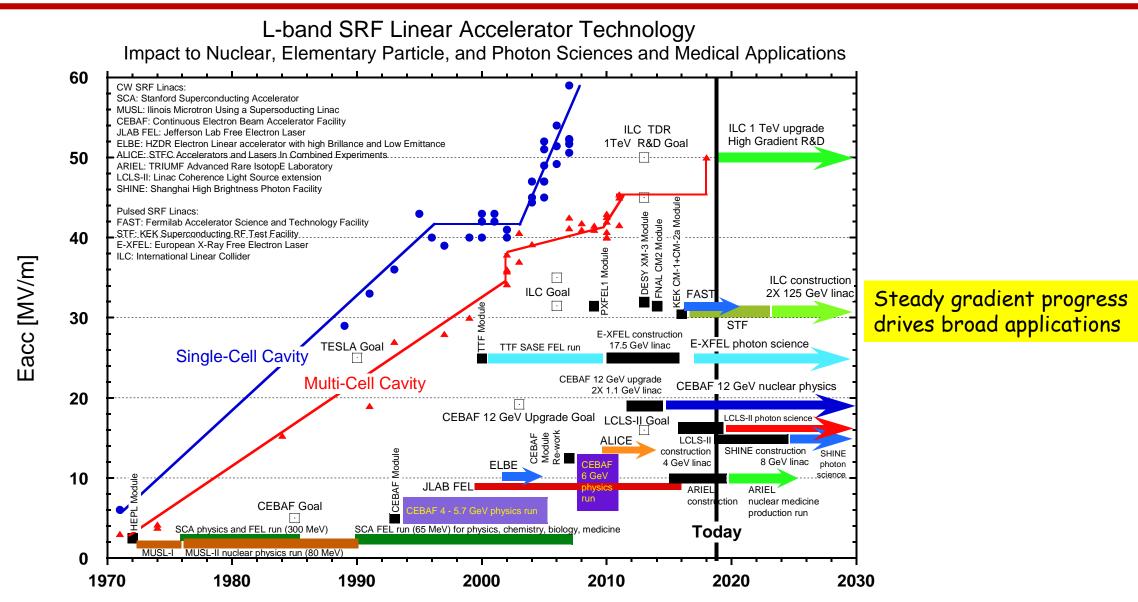
Alternative Cavity Shapes for High Gradient Low-Surface-Field (LSF) Shape Cavity Development Status

Rongli Geng, JLAB Hitoshi Hayano, KEK Zenghai Li, SLAC

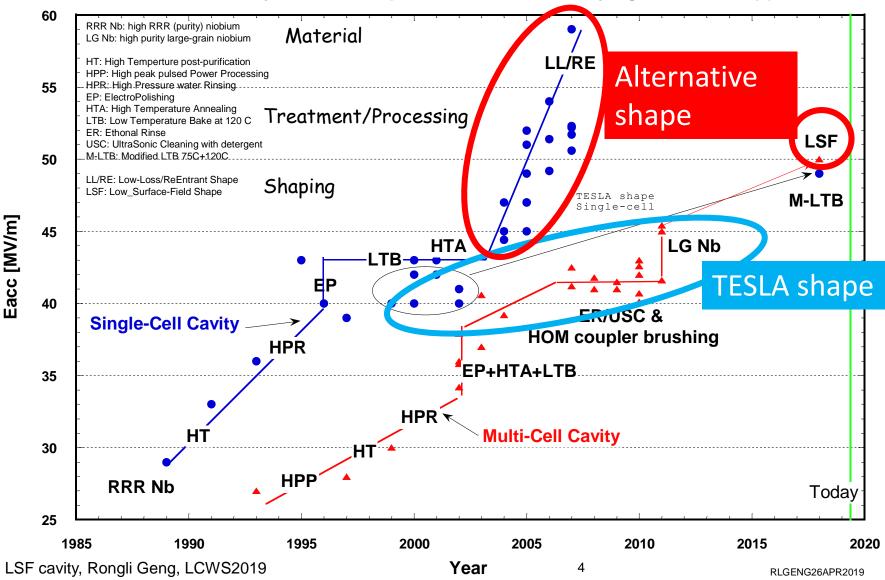
High-Gradient High-Efficiency SRF Development

Supported by US-DOE under US-Japan HEP Cooperation Program

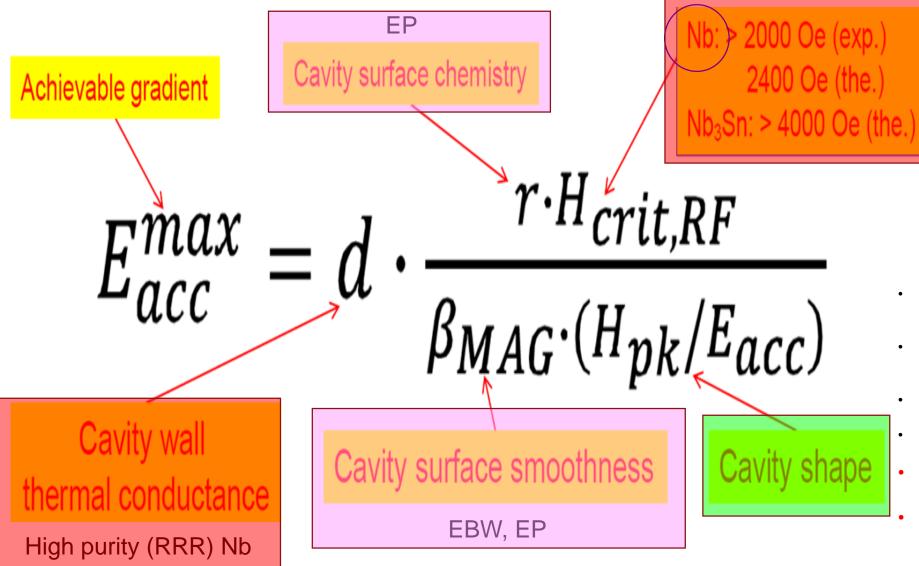


Outline

- Rise of SRF gradient and current landscape
- Technical approaches to gradient and role of cavity shaping
- Outcome of initial effort in cavity shaping
- LSF shape cavity development
- Birth of the first 9-cell LSF shape cavity
- Conclusion and outlook


Rise of SRF Gradient and Current Landscape

Technical Approaches to Gradient

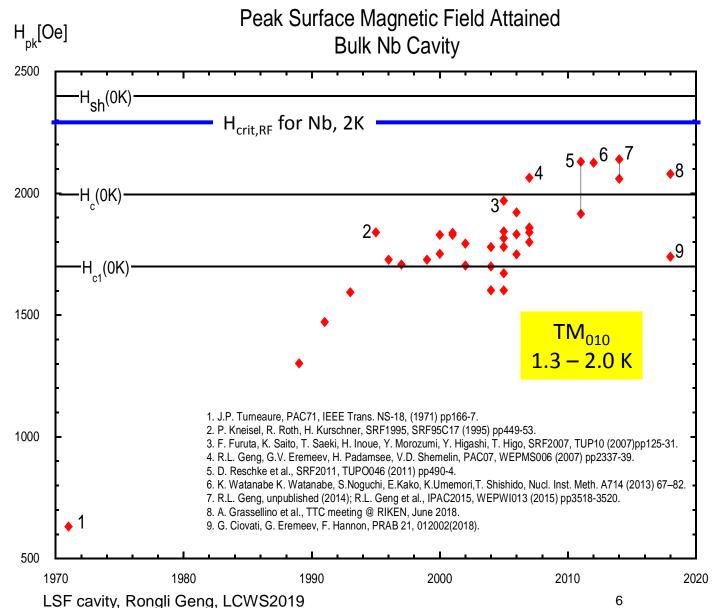

L-Band SRF Cavity Gradient Imporvement and Underlying Technical Approachs

Cavity shaping delivered gradient breakthrough of > 50 MV/m

Reason for Pursuing Cavity Shape

Significant past effort to master material & treatment/processing for reliable cavity gradient

Decades of R&D + hundreds of M\$ investment*, solutions in addressing $(d, r, \beta_{MAG,})$ for high gradient SRF now converged and in hand : Hi purity Nb, EBW, EP, LTB, HPR


* Peter Kneisel, Hot Topics, SRF2009, Dresden, Germany.

- While one's desire is to get E_{acc} from a cavity device in its vacuum space, its inner surface must bear an RF magnetic field, peak value being Hpk.
- Whenever E_{acc} is raised, H_{pk} increases in proportion. The ratio H_{pk}/E_{acc} a fixed value, determined by shape, solely.
- When H_{pk} reaches this value H_{crit,RF}, superconductivity is destroyed.
- Hence the desired E_{acc} has a limit, specific to cavity surface material.
- Role of cavity shaping is to seek those possessing smaller ratio H_{pk}/E_{acc}.
 When a good shape is united with proven material and process, a gain in E_{acc} is achieved effectively in a

Jefferson Lab

coherent manner.

Progress in Treatment & Processing toward Theoretical Limiting Field

Data Point	material	Freq [GHz]	# of cells	Treatment		
1	Nb	1.3	1	HT+LTB		
2	Nb	1.3	1	ВСР		
3	Nb	1.3	1	EP+LTB		
4	Nb	1.3	1	EP+LTB		
5	LG Nb	1.3	9	EP+LTB		
6	Nb	1.3	2	EP+LTB		
7	LG Nb	1.5	1	EP+LTB		
8	Nb	1.3	1	EP+M-LTB		
9	Nb	3.0	1	EP+LTB		
Nb: Fine-grain nNb LG Nb: large grain ingot Nb HT: UHV firing 1800 °C CP: Buffered chemical Polishing (HNO ₃ +HF+H ₂ O) EP: Electropolishing (HF+H ₂ O+H ₂ SO ₄) LTB: Low temperature bake 100-120 °C						

M-LTB: Modified LTB (75°C + 120 °C)

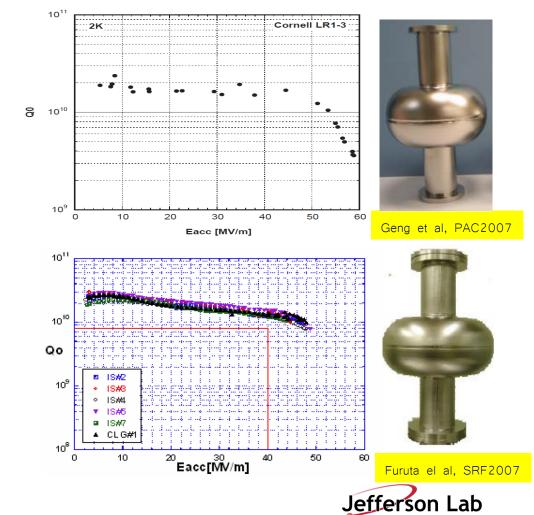
Jefferson Lab

Year

Outcome of Initial Effort in Cavity Shaping: Achievement

		TESLA	Low-loss/ICHIRO	Re-entrant	
frequency	MHz	1300	1300	1300	
Aperture	mm	70	60	60	
Epk/Eacc	-	1.98	2.36	2.28	
Bpk/Eacc	mT/(MV/m)	4.15	3.61	3.54	

≻ RE


- Shemelin, Padamsee, Cornell Internal Report, SRF020128-01 (2002).
- Shemelin, Padamsee, Geng, NIM-A496(2003)1.

- Sekutowicz, Kneisel, Ciovati, Wang, JLAB Tech Note, TN-02-023 (2002).
- Sekutowicz, Talk 1st ILC Workshop at KEK, Japan, Nov. 13-15, 2004.

TESLA

- Haebel et al., Proc. HEACC vol.2 , Hamburg (1992).
- Proch, Proc. 6th SRF Workshop, Newport News, VA, USA (1993).

Lowering the ratio H_{pk}/E_{acc} by 13-15% $E_{acc} \sim 60$ MV/m achieved w/ proven processing

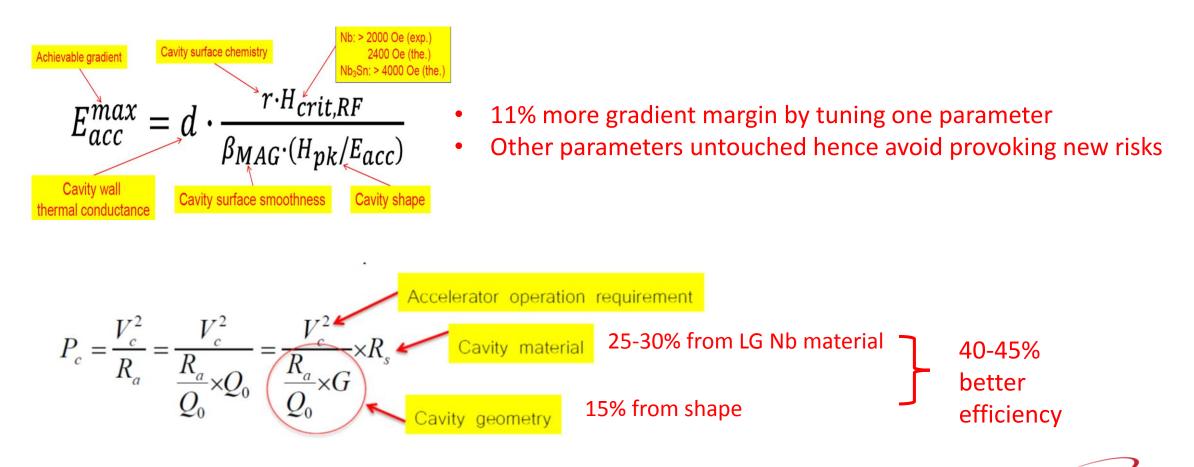
LSF cavity, Rongli Geng, LCWS2019

Outcome of Initial Effort in Cavity Shaping: Challenge

		TESLA	Low-loss/ICHIRO	Re-entrant
frequency	MHz	1300	1300	1300
Aperture	mm	70	60	60
Epk/Eacc	-	1.98	2.36	2.28
Bpk/Eacc	mT/(MV/m)	4.15	3.61	3.54

- H_{pk}/E_{acc} 13-15% reduction in RE & LL at cost of 15-20% increase in E_{pk}/E_{acc.}
- Lessons learned: To materialize the full potential of new shapes, it is still required to fight against field emission, though it not being a fundamental limit.

The Development of Low-Surface-Field (LSF) Shape Cavity


		TESLA	Low-loss/ICHIRO	Re-entrant	Low-surface-field	Lowering H _{pk} /E _{acc} by 11% while preserving the same E _{pk} /E _{acc} as
frequency	MHz	1300	1300	1300	1300	compared to TESLA shape
Aperture	mm	70	60	60	60	Li, Adolphsen, LINAC08 (2008).
Epk/Eacc	-	1.98	2.36	2.28	1.98	
Bpk/Eacc	mT/(MV/m)	4.15	3.61	3.54	3.71	
		V_c^2	$V_c^2 \qquad V_c^2 \checkmark$		operation requirement	All new shapes possess intrinsic higher efficiency, independent of material surface losses.
		$P_c = \frac{V_c}{R_a}$	$= \frac{R_a}{Q_0} \times Q_0 = \frac{R_a}{Q_0} \times G$			Power dissipation saving 20-34%
G*R/Q	$\mathbf{\Omega}^2$	30840	37970	41208	36995	

LSF cavity, Rongli Geng, LCWS2019

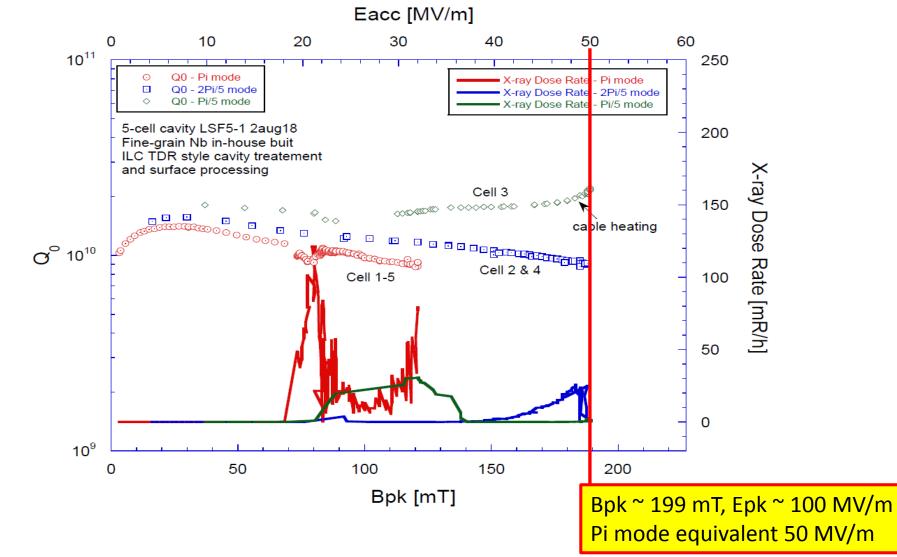
Jefferson Lab

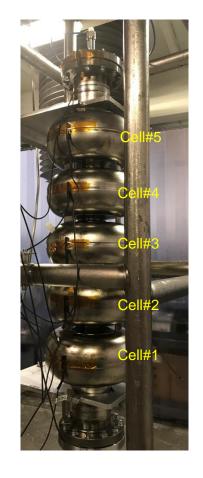
2013 Selection of LSF + LG Nb at JLAB to Advance Gradient & Efficiency

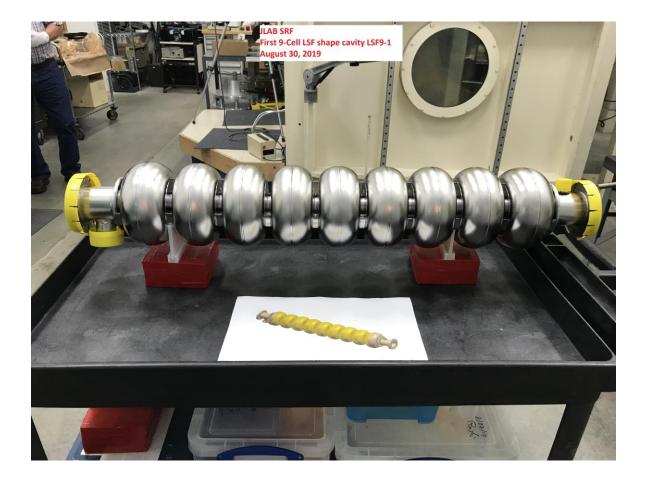
- Goal 1: 50 MV/m gradient in multi-cell cavities with Q₀ 2×10¹⁰ at 45 MV/m and 1.8-2.0 K
- Goal 2: In reference to ILC TDR baseline, 11% more gradient margin and 45% better efficiency is reasonable as underpinned by selected shape & material

LSF Shape Cavity Development

- 2015, single-cell LSF shape LG Nb cavities prototyped, tested.
- 2016, 5-cell LSF shape FG Nb LSF5-1 cavity completed.
- 2018, LSF5-1 tested to surface field corresponding to accelerating gradient of 50 MV/m in three mid-cells.
 - Test continues on understanding & overcoming field emission limits in 2 end-cells.
 - Field emission studies using Kyoto's sX-mapping instrument (under US-Japan collaboration with Prof. Y. Iwashita, Kyoto University)
- 2019, First 9-cell LSF shape FG Nb cavity completed.




Advances since 2017 made possible due to US-Japan Collaboration in HEP, supported by US DOE


LSF5-1 Current Performance

Birth of First 9-cell LSF Shape Cavity

 Design Priority: Lorentz Force Detuning Coefficient

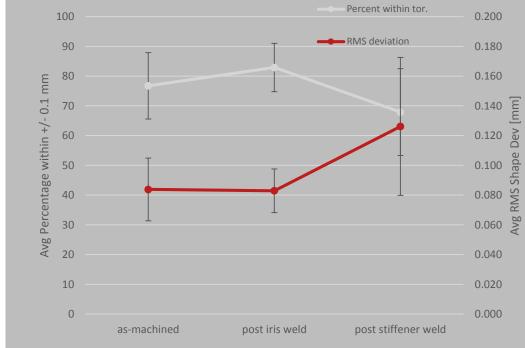
-Reason:
$$\Delta f = k_{LFD} \cdot E_{acc}^2$$

- -Approach: choosing stiffener radial location
- Fabrication Priority: Shape Accuracy
 - -Reason: small cell-to-cell coupling
 - -Approach:
 - Cup anneal then re-stamping
 - Piecewise stiffener, light weld
- Fabrication Priority: Cost Effectiveness
 —Reason: present standard fab expensive
 - -Approach:
 - Eliminate dumbbell shaping
 - Eliminate dumbbell machining

Shape Accuracy

LSF cavity, Rongli Geng, LCWS2019

Half cell C9 RMS shape deviation 0.100 mm


Half cell C RMS shap

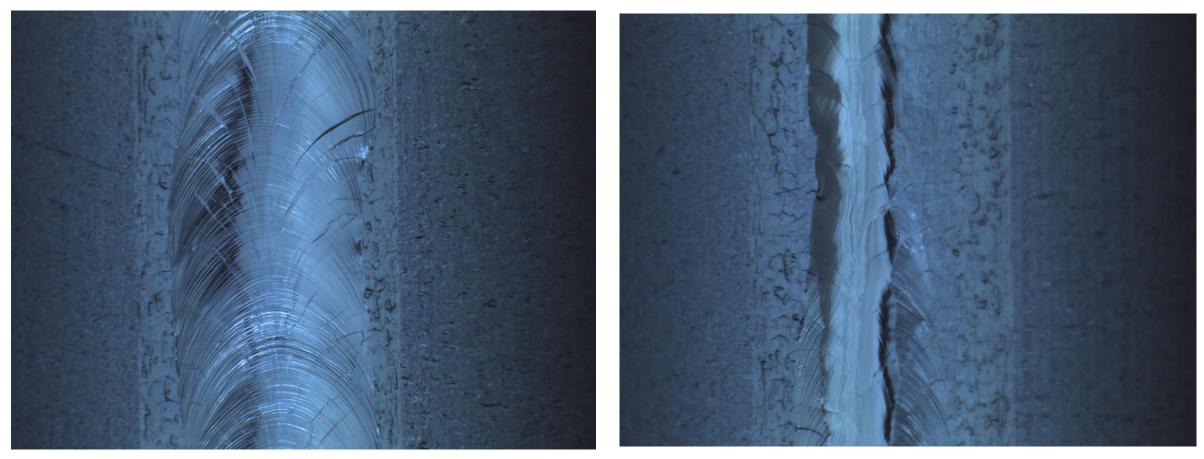
Half cell C9 after iris weld RMS shape deviation 0.071 mm

Half cell C9 after stiffener weld RMS shape deviation 0.072 mm

19 half cells for LSF9-1 90% points within +/- 0.2 mm tolerance (std dev 8%) consistent with standard fabrication

LSF9-1 Half Cell Shape Accuracy Statistics

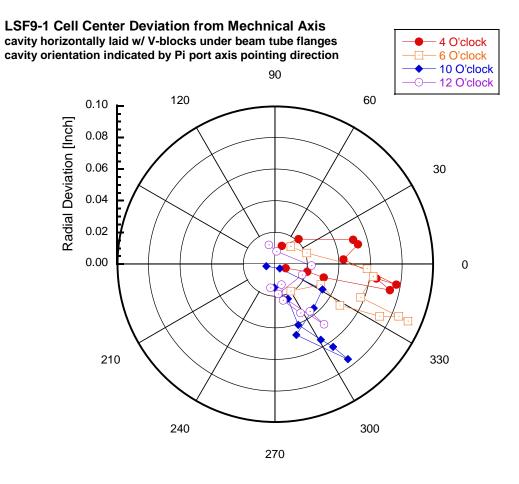
14


Cost-Effective Fabrication by Simplification

LSF cavity, Rongli Geng, LCWS2019

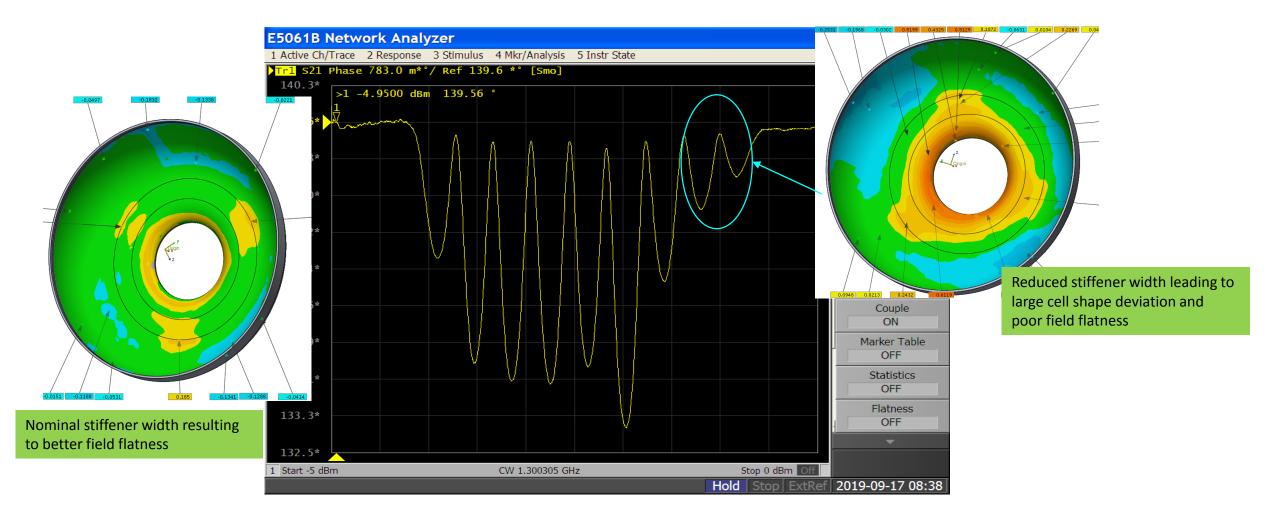
Optical Inspection of Equator EBW Seams

LSF9_1Cell5EQ_z631mmPhi79deg0006


LSF9_1Cell5EQ_z631mmPhi171deg_FZ neck0010

Overall good weld, notable features documented. Re-inspection to be carried out at KEK for tracking feature evolution as cavity processing progresses

Issue Encountered: Component Alignment during Final Weld



Path forward: Short term within JLAB in-house facility, Improve alignment procedure. Long term, seek outside facility with cavity assembly oriented vertically in EBW chamber.

Issue Encountered: Large Shape Distortion due to Stiffener Width Deviation

Path forward: Revised stiffener design width based on LSF9-1 experience

Conclusion and Outlook

- The approach of LSF shape +LG Nb was chosen in 2013 at JLAB, aimed to advance highgradient high-efficiency SRF to next level. Rapid progress since 2017 due to new US-DOE support under US-Japan collaboration.
- First sight of 50 MV/m in 3 mid-cells in the 5-cell cavity LSF5-1 (FG Nb). Its evaluation continues with focus on understanding end cell field emission using Kyoto's sX-mapping instruments.
- The first LSF 9-cell (FG Nb) cavity LSF9-1 is completed in-house fabrication at JLAB. It is being shipped to KEK for surface processing and field flatness tuning.
- Plan is to build two more 9-cell LSF shape cavities including one from FG Nb (material in hand) one from LG Nb (material to be acquired).
- We anticipate this work would allow us to make new contributions in several fronts relevant to ILC: shifting the gradient performance frontier in full scale 9-cell cavity; increase gradient margin; save cavity fabrication cost; save accelerator operation cost.

