





### **Trapped-flux Surface Resistance** at High Gradients

Mattia Checchin

LCWS 2019, Sendai, Japan 29 November 2019

#### How do vortexes form?





### **Vortex motion during cooldown**





### Why do vortices dissipate under RF driving?

 Vortices oscillate driven by the RF current



Part of the EM energy in the resonator is converted into vortex

motion

Power

-w→ We

$$R_{fl} = \eta_t SB$$

- $\Rightarrow \eta_t$  flux trapping efficiency
- ⇒ S sensitivity to trapped flux



### What is a pinning site?

- Pinning sites are material imperfections or defects
  - Normal-conducting and dielectric inclusions
  - Grain boundaries
  - **Dislocations**
  - Local disorder
- Pinning ⇒ *minimization of the system energy* 
  - Vortex = loss in condensation energy
  - Defect = weak or not superconducting site
- An efficient pinning center has *dimension* at least comparable to the coherence length  $\xi$ 
  - At 2 K for niobium  $\xi \cong 10 38 \, nm$
  - Near Tc for niobium  $\xi \cong 150 300 \ nm$
  - $\xi$  is the characteristic variation length of the order parameter in the superconductor





#### Curtesy of M. Martinello

### Possible pinning sites in Nb











- Normal-conducting and dielectric inclusions: 3-D defects that introduce large  $\kappa$  variation (ex: nano-hydrides in the near-surface area)
- Grain boundaries: 2-D defects in the crystal structure, they define the interface between 2 grains.
  - ➤ <u>Low-angle GBs</u>: the misorientation between the two grains is <15 degrees
- <u>Dislocations</u>: areas were the atoms are out of position in the crystal structure.
  - Tangles: after plastic deformation very small grain forms (cells) that are surrounded by tangles of dislocations
- Local disorder: 1-D defects (ex: impurities, vacancies)



### Flux expulsion

### Fast cool-down helps flux expulsion



A. Romanenko et al., J. Appl. Phys. **115**, 184903 (2014)

- Fast cool-down leads to <u>large thermal</u> gradients → efficient flux expulsion
- Slow cool-down leads to <u>small thermal</u> gradients → poor flux expulsion



### Flux expulsion depends on bulk properties

- Flux expulsion is a bulk property → does not depend on surface treatment
- Not all materials show good flux expulsion, even with large thermal gradient during the SC transition → high T treatments allow to improve materials flux expulsion properties





S. Posen et al., J. Appl. Phys. 119, 213903 (2016)



#### Curtesy of M. Martinello

### Analysis of "as received" materials

- Material that shows good flux expulsion properties after annealing at 800C has bigger grain size in the "as received" condition
- Material with bad flux expulsion properties shows larger density of low-angle GBs (misorientation < 15°)</li>
- Material with bad flux expulsion properties shows <u>larger density of</u> regions with very high local misorientation



### **Analysis of "as**

Material that shows go flux expulsion proper after annealing at 800

has bigg

Material expulsi shows la <u>low-ang</u>

the "as r Dislocations tangles observed in highly defective regions of as-received material with bad flux expulsion

- Dislocation tangles dimension comparable to  $\xi$  near Tc
- (misorie High likelihood to be efficient pinning centers during explusion
- Material expulsion properties shows larger density of regions with very high local misorientation



Curtesy of M. Martinello

ad flux expulsion-

# Thermodynamic considerations on flux expulsion

### Thermodynamic force during cooldown

The Gibbs free energy density defines the stability of vortices in the SC:

$$g = B(H_{c_1}(T) - H)$$

We can define the *thermodynamic* force acting on the vortex as:

$$f = -\frac{\partial g}{\partial x} = -\frac{\partial g}{\partial T} \frac{\partial T}{\partial x}$$

$$f = \frac{2BH_{c_1}(0)T}{T_c^2} \nabla T$$





M. Checchin, TTC, MSU 2017



### **Critical thermal gradient**

The *pinning force acting against the expulsion* is defined in terms of critical current density  $J_c$ :

$$f_p = |\bar{J}_c \times n\bar{\Phi}_0| = J_c B$$

The minimum thermal gradient needed to expel vortices is the critical thermal gradient  $\nabla T_c$ :

$$\nabla T_c = \frac{J_c T_c^2}{2H_{c_1}(0)T}$$

$$\nabla T_c \propto J_c \propto f_p$$

g(x)  $f_p$ Meissner State  $T_{c_1}$ Mixed State

M. Checchin, TTC, MSU 2017



Pinning point

### Statistical definition of trapping efficiency

- The probability of expelling vortices with the thermal gradient  $\nabla T_{c_i}$  is  $P(\nabla T_{c_i})$
- The trapping efficiency  $\eta_t$  is function of  $\nabla T_{c_i}$ :

$$\eta_t = \left[1 - P(\nabla T_{c_i})\right]$$

$$P(\nabla T_{c_i}) = \int_0^{\nabla T_{c_i}} p(\nabla T_c) \, d\nabla T_c$$

The trapped field is then:

$$B_t = \eta_t B = B [1 - P(\nabla T_{c_i})]$$



M. Checchin, TTC, MSU 2017



### Comparison with experimental data

### Good agreement with experimental data

Estimated  $J_c$  in agreement with literature values for Nb (1 – 10 A/mm<sup>2</sup>)

 $J_c$  measurement near  $T_c$  can provide us lot of info on the expulsion properties of the cavity material

⇒ J<sub>c</sub> measurements are being conducted at Fermilab



M. Checchin, TTC, MSU 2017



# Trapped flux sensitivity at high accelerating gradients

## Standard ILC cavity performance (no trapped field)





## Standard ILC cavity performance (5 mG trapped)





## Standard ILC cavity performance (10 mG trapped)





## Standard ILC cavity performance (20 mG trapped)





### Sensitivity at high RF field



## Fermilab High Luminosity ILC Workshop (May 2019)

- Significant luminosity improvements are made possible by SRF R&D advances since TDR
- Main result is given in table below by implementing technically feasible changes, ILC baseline luminosity of 1.35 x 10<sup>34</sup> can be increased
  - Increased number of bunches x 2
  - Increased rep rate x 3
    Increased Q<sub>0</sub> x 2
  - Beam and IP parameters same as ILC baseline
- Effective luminosity with polarization advantage (x 2.5) is 20 x 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup> (ILC) vs. 17 x 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup> (FCC-ee, including multiplier of 2 for multiple interaction points)
- AC power 267 MW (ILC) vs. 282 MW (FCC-ee)
- Capital cost ~7.7B (ILC) vs. 10.5B (FCC-ee)
  - Not including labor or detectors



 $\times$  14.8



# Numerical simulations of vortex dynamics and surface resistance

### Single-vortex dynamics simulation

Neglecting the inertial term  $(m_v \approx 0)$ :

$$\eta_0 \dot{u}(t,z) = \epsilon u''(t,z) + f_p \big( u(t,z) \big) + f_L(t,z)$$

$$\text{VISCOUS} \downarrow \text{LINE} \uparrow \text{PINNING} \uparrow \text{LORENTZ}$$

$$\text{TENSION} \quad \text{FORCE} \quad \text{FORCE}$$

### Single-vortex dynamics simulation

Neglecting the inertial term  $(m_v \approx 0)$ :

$$\begin{cases} \eta_0 \dot{u}(t,z) = \epsilon u''(t,z) + f_p\big(u(t,z)\big) + f_L(t,z) \\ u(0,z) = 0 \\ u'(t,0) = 0 \\ u'(t,Z_{max}) = 0 \end{cases}$$
 Example of convergence to steady-state solution

Equation solved with method of lines until steady-state, then the surface resistance is calculated as:

$$R_{fl} = \frac{2B_t \mu_0 f}{\lambda B_n} \int_0^{1/f} \cos \omega t \int_0^\infty \dot{u} \, e^{-z/\lambda} \, dz \, dt$$





### Pinning landscape from building block potential

- Real pinning potential is unknown
- Pinning landscape defined as the sum of many pinning potentials
- Every pinning potential is a modified Lorentzian function
  - a is the anisotropy parameter
  - *U<sub>i</sub>* potential depth
  - $-X_i$  and  $Z_i$  pinning center

coordinates 
$$U_p(u,z) = -\sum_i \frac{(2\xi)^2 U_i}{(2\xi)^2 + (u - X_i)^2 + a(z - Z_i)^2}$$

$$RANDOM$$
PISTRIBUTION



$$f_p(u,z) = -\frac{\partial U_p(u,z)}{\partial x}$$



### Comparison with experimental data at 1.3 GHz

 Good qualitative agreement with experimental data





### RF depinning







0.2 -

S (nQ/mG

Concluding...

#### **Conclusions**

- High-gradient sensitivity is very large and jeopardizes the performance of high-Q/high-E<sub>acc</sub> SRF cavities
- To mitigate this issue, it is of primary importance to:
  - utilize materials with low occurrence of high local misorientation (good expulsion)
  - allow for fast cool-down in CMs
  - implement strict magnetic field hygiene
  - improve magnetic shielding (compensation coils?)
- LCLS-II is a successful example ILC should follow to mitigate this issue





### Backup slides

### Detailed study of sensitivity at high RF amplitude

- Set-up for sensitivity study:
  - High gradient cavity with ILC recipe ( $E_{max} = 48 MV/m$ )
  - Helmholtz coils
  - 3 FGs at equator
  - RTDs at irises and equator
  - Temperature mapping (Tmap)

### Objective:

- Gather new insights on trapped flux sensitivity at high RF field level
- Study the dissipation pattern due to trapped vortices with Tmap



### Thermal contribution estimation

- 1D thermal diffusion model
- From Tmap data:  $\langle \Delta T_{out} \rangle$ 
  - RTD efficiency ~35%
- From RF data:  $P_c = \frac{g}{2} \frac{H_p^2}{Q_0}$

$$\langle \Delta T_{RF} \rangle = \frac{d}{\kappa(T)} P_c + \frac{1}{0.35} \langle \Delta T_{out} \rangle$$

•  $\langle R_{BCS} \rangle$  estimated with Halbritter code



 $\kappa(T) = 0.7e^{1.65T - 0.1T^2}$  – P. Bauer et al. Physica C 441, 51 (2006)





### Vortex surface resistance at high RF amplitudes





### **Trapped-flux frequency shift**

- Deviations from Lorentz force detuning observed when the cavity is field-cooled (FC)
- $\Delta f_{fl}$  frequency shift due to trapped vortices

$$\Delta f_{fl} = \Delta f_{FC} - \Delta f_{ZFC}$$

- Depends on surface peak magnetic field  $B_p$
- Depends on trapped field  $B_t$





### Penetration depth variation due to RF depinning

Higher  $B_p o {\sf RF}$  depinning o deeper induced currents o larger  $\Delta \lambda_{fl}$ 



### Vortex phase space for increasing $B_p$





### Effect of pinning on vortex dynamics

- Without pinning
  - $-\dot{u}$  is directly proportional to  $B_p$ 
    - Linear response
- With pinning
  - Slope change at  $B_p^d$  (depinning field)
    - **Depinning**,  $\dot{u}$  increases rapidly
  - Slope change at  $B_p^s$  (saturation field)
    - Saturation,  $\dot{u}$  approaches the linear response
  - Below  $B_p^s$ ,  $R_{fl}$  is lower:

$$R_{fl} \propto f \int_0^{1/f} \dot{u} \, dt$$



