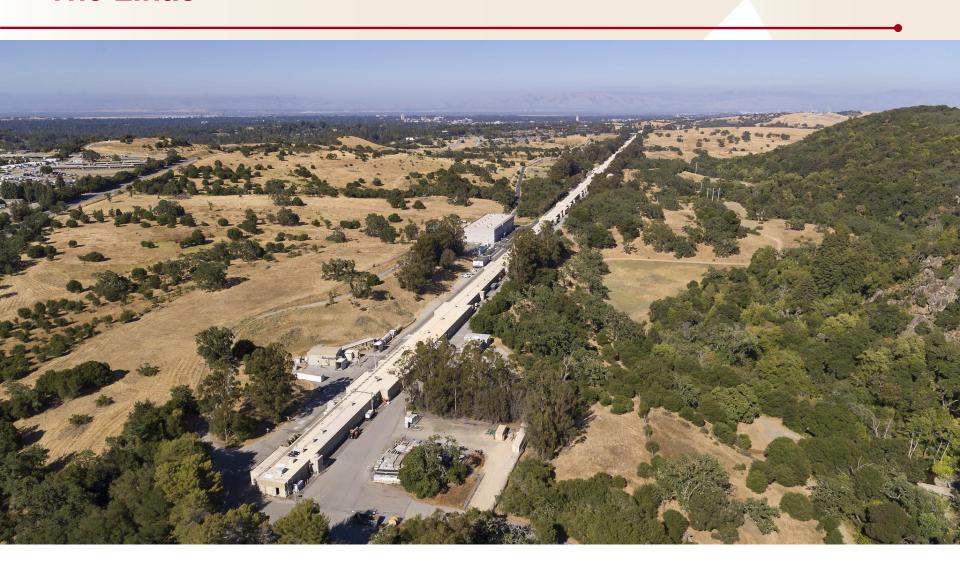


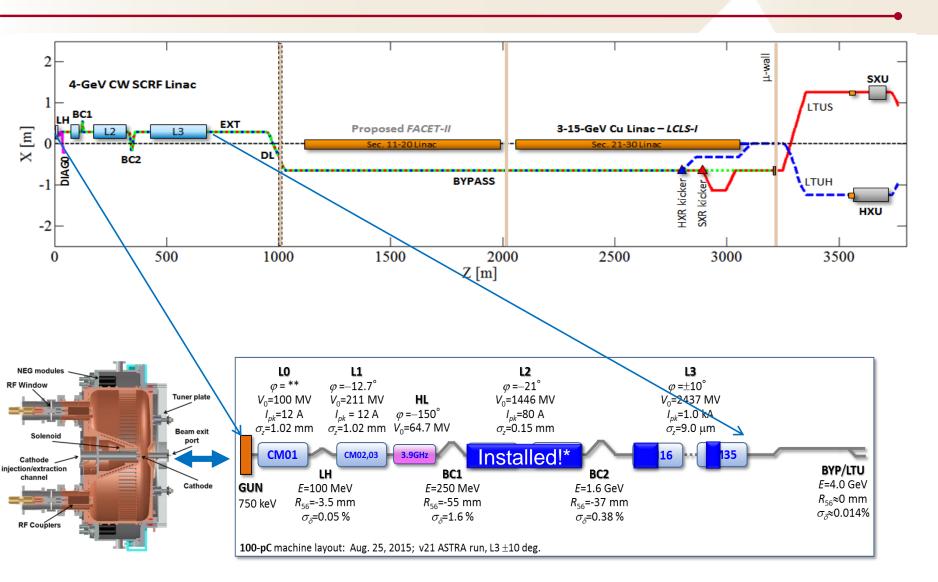
Status of the LCLS-II Cavities & Cryomodules

Andrew Burrill (on behalf of the collaboration)

Oct 31st, 2019

Outline

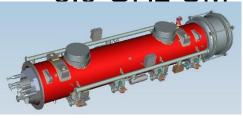

- Superconducting Linac Overview
- Cryomodule Assembly & Testing Status
 - Performance
 - Challenges
- Cryomodule Installation Status
- Summary


Project Collaboration: SLAC couldn't do this without...

The Linac

Linac Layout

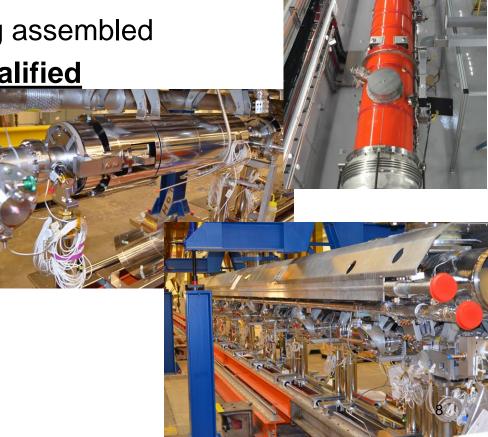
The Linac


High-level comparison of 1.3 GHz & 3.9 GHz cryomodule

1.3 GHz CM

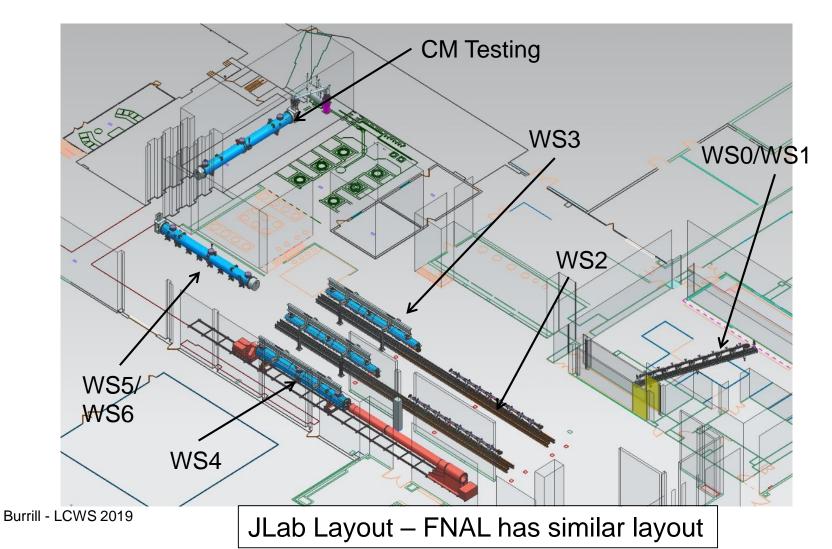
item	1.3 GHz CM	3.9 GHz CM
# installed (built) CM's	35 (40)	2 (3)
Length/CM	~12.5 m	~7 m
Weight/CM	19,000 lbs	9,700 lbs
#cavities/CM	8	8
Cavity nominal Q0@2K	2.7E10 (N2 doped)	2.0E9 (std process)
Cavity nom. Eacc	16 MV/m	13.4 MV/m

3.9 GHz CM


Length/CM	~12.5 m	~7 m
Weight/CM	19,000 lbs	9,700 lbs
#cavities/CM	8	8
Cavity nominal Q0@2K	2.7E10 (N2 doped)	2.0E9 (std process)
Cavity nom. Eacc	16 MV/m	13.4 MV/m
Cavity tuner	End-lever + piezos	Blade + piezos
Cavity magnetic shielding	He vessel external (<5 mG)	He vessel internal & external (<15 mG)
Power couplers	All one side	Alternating sides
Magnet	Split quad+dipole V/H	None
HOM feedthroughs, BPM, cryogenic valves, interconnect & stand	Identical	Identical

LCLS-II Cavity and CM Statistics

- 320 1.3 GHz Cavities required
 - 304 from Vendors, 16 from ILC R&D program
- 312 of 320 cavities qualified to date*
- 33 of 40 1.3 GHz cryomodules tested**
- 7 cryomodules currently being assembled


19 of 24 3.9 GHz cavities qualified

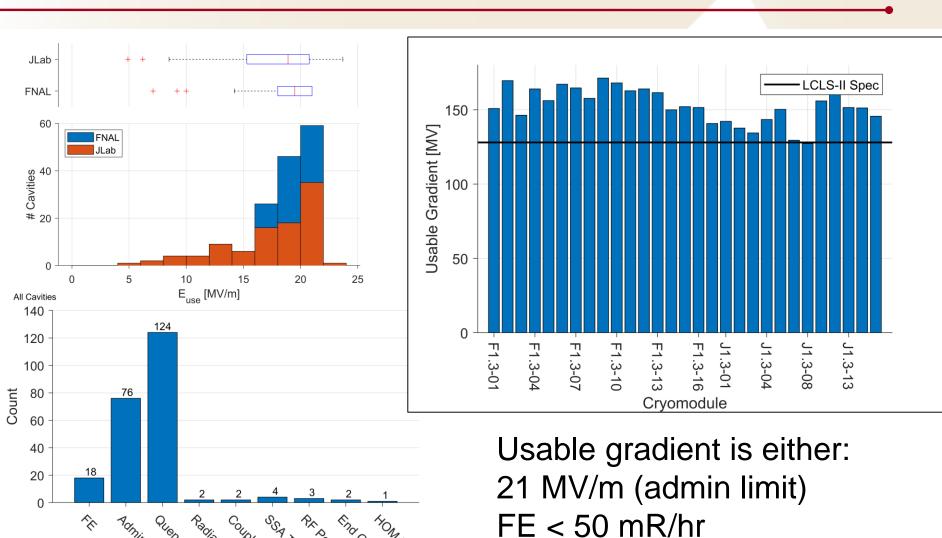
Cryomodule Assembly Sequence

Each Lab has 6 workstations, similar to XFEL

JLab Cryomodule Production

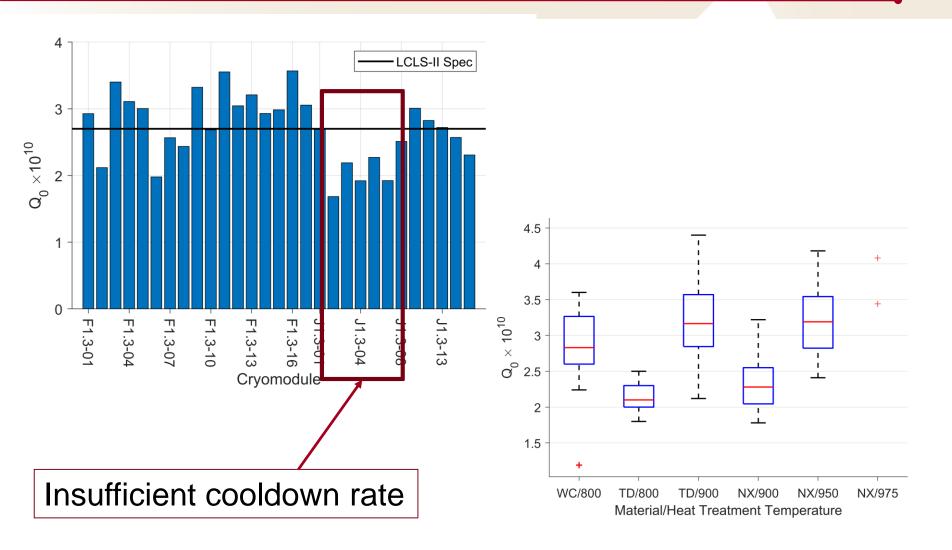
CM Status Dashboard - JLab

			CM Ass	sembly					
WorkStation		14/52	14/62	WS4	WS5	CM Testing		Ready for	CM
/CM	WS1	WS2	WS3	W54	W55	Complete	rework	Shipping	Installation
J1.3-01									in negarass
J1.3-01 J1.3-02							hold	yes	in progress
J1.3-02 J1.3-03							Holu	Voc	in progress
J1.3-04								Voc	in progress
J1.3-04 J1.3-05								TES	iii bi ogi ess
J1.3-06			in progress						
J1.3-07									
J1.3-08								yes	in progress
J1.3-09	in progress								
J1.3-10									in progress
	requires								
J1.3-11	rebuild						N/A		
J1.3-12							N/A	yes	in progress
J1.3-13							N/A	yes	in progress
J1.3-14							N/A	yes	in progress
J1.3-15							N/A	yes	in progress
								in	
J1.3-16							N/A	progress	
J1.3-17							N/A		in progress
								in	
J1.3-18							N/A	progress	
J1.3-19						in progress	N/A		
J1.3-20					progress		N/A		
J1.3-21			in progress				N/A		


CM Status Dashboard - FNAL

			CM A	Assembly						
WorkStation /CM	WS1	WS2	WS3	WS4	WS5	CM Testing	rework	Ready for Shipping	1	
F1.3-01								yes	in progress	
F1.3-02									in progress	
F1.3-03						in progress				
F1.3-04								YES	in progress	
F1.3-05	hold									
F1.3-06	requires rebuild									
F1.3-07								YES	in progress	
F1.3-08								YES	in progress	
F1.3-09								yes	in progress	
F1.3-10								YES	in progress	
F1.3-11								YES	in progress	
F1.3-12	hold									
F1.3-13							N/A		in progress	
F1.3-14							N/A		in progress	
F1.3-15							N/A		in progress	
F1.3-16							N/A	yes	in progress	
F1.3-17							N/A	yes	in progress	
F1.3-18							N/A	yes	in progress	
F1.3-19							N/A		in progress	
F3.9-01		in progress								
F3.9-02	in progress									
F3.9-03										

Cryomodule Performance – Usable Gradient

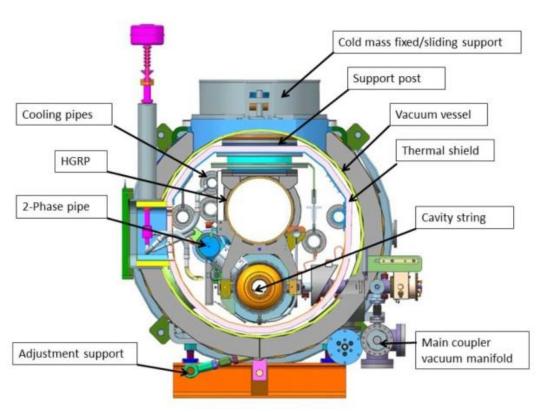

Burrill - LCWS 2019

Gradient Limit Cause

Cavity quench

Cryomodule Performance – Quality Factor

Gradient Optimization for 4 GeV Beam


JLab Q's	P _{diss} /CM [W]	Extrapolated Total CP Load [kW]
Estimated	68.25	3.38
As Measured	72.85	3.54

Single cryoplant operation with overhead is 3.8 kW

Both cases demonstrate single-cryoplant operation is feasible with average cavity gradient of 15.4 MV/m

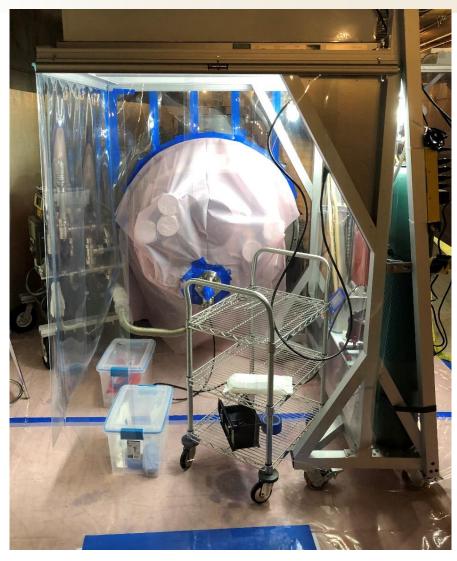
CM Installation Workflow

6 Major Install Phases

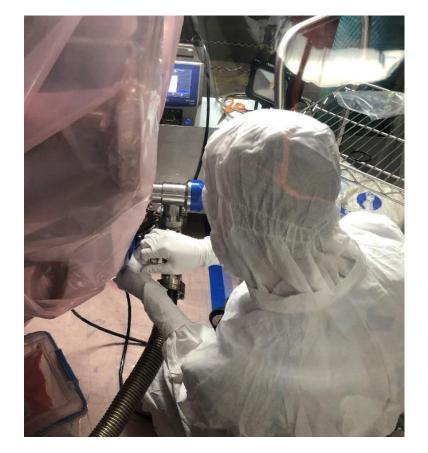
- Unloading
- Receiving / acceptance testing
- Physical install / alignment
- Welding cryo pipes
- Particle free beamline install
- Insulation vacuum / cryo equip.

CM Unloading (LCLSII-4.5-PP-0989)

- Extensive focus on procedure development and process improvement and training
- Planned deliveries of about ~2 per month, peak delivery of 4 per month



CM Acceptance Tests (LCLSII-4.5-PP-0703)


	SLAC Spec	Delivered Units
Mechanical - Inspection	No Visible Issues	Generally Meet Spec
Shock Logger Review	< 1.5 G	Transit Upgrades Meet Spec
Beam Vacuum	< 10 ⁻⁵ mBar	Meet Spec
Coupler Vacuum	< 10 ⁻⁵ mBar	Generally Meet Spec
Alignment	< 0.2 mm Δ	Difficulty meeting spec
RF Cavity Check	< 10 kHz Δ	Generally Meet Spec
Electrical Tests	No open / short	Generally Meet Spec
Leak Test (CM iso-vac)	< 10 ⁻⁵ mBar-L/sec	Meet Spec

Physical Install Preparation (LCLSII-4.5-PP-1372)

- Beamline gauge tree removal
- Conflat flanges removed from cryo pipes
- Shipping fixture removal

Burrill - LCWS 2019

Physical Install

- Tunnel installation successfully completed for 22 units
- Clearances are very tight, but adequate

Burrill - LCWS 2019

20

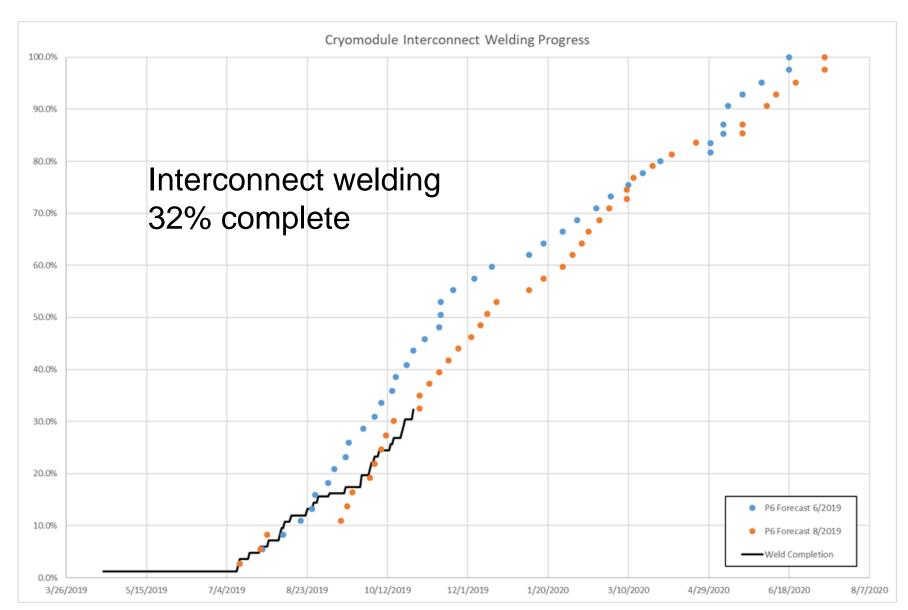
2" Pipe Weld & Exam Cryo Pipe Leak Test

Pressure Test - Full String

Welding – Installation

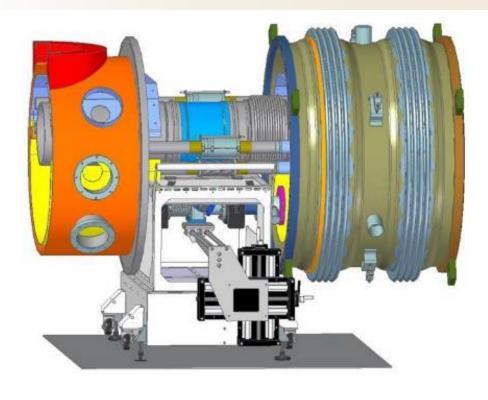
- Several early challenge:
 Accommodation of the line liquid level assembly and gate valve support
- Simplified CM Model for Interconnect did not show interference
- Solution tested and implementation in progress
- New tooling developed to pull pipes into position

L2 and L3 cryomodule installation status


	FC2	CM04	CM05	CM06	CM07	CM08	CM09	CM10	CM11	CM12	CM13	CM14	CM15	FC5
Install		F07	J04	F08	J10	F04	J08	F10	F09	J13	F11	J14	F01	
Line B														
Line A		10 00						40						
Line C														
Line D														
Line E		s to 00										4.	F8 04	
Line F		c (c o)						10	-				FB 03	
Beamline														

	FC6	CM16	CM17	CM18	CM19	CM20	CM21	CM22	CM23	CM24	CM25	VBB	CM26	CM27	CM28	CM29	CM30	CM31	CM32	CM33	CM34	CM35	ECD
Install		F13	J12		F17	F18	J15	F14	F15	F16				F02	J03								
Line B																							
Line A																							
Line C																							
Line D																							
Line E			\perp							\perp	\perp		\perp	\perp	\perp			\perp	\perp	\perp	\perp	\perp	\perp
Line F			\perp							\perp	\perp		\perp	\perp	\perp			\perp	\perp	\perp	\perp	\perp	\perp
Beamlir						$\perp \perp \perp$				\perp	\perp		\perp		\perp					\perp	\perp	\perp	$\perp \perp \perp$

- Welded interconnect pipes shown at right.
- CM18 slot to be filled after gutters, waveguides, etc. are Installed due to water leak.



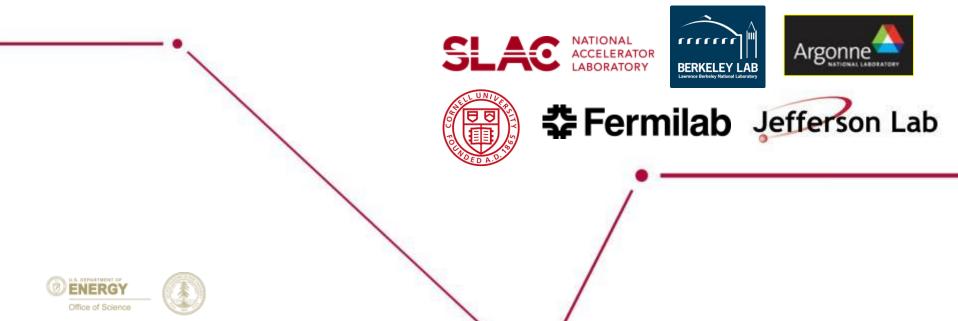
CM Beamline Install

CM Beamline:

- BLA install particle free clean
- Clean-zone (Ready)
- Particle free pump cart (Ready)
- SLAC staff and program for Particle free cleaning and assembly is maturing
- Process development continues
- Goal to begin BLA installation in Dec 2019

Schedule

- 3.9 GHz Cryomodules delivered to SLAC March 2020
- 35 Cryomodules delivered to SLAC April 2020
- Linac Installation complete August 2020
- Linac Cooldown Oct 2020
- RF Commissioning Jan 2021
- Linac beam checkout April 2021
- First Light July 2021


Summary

- 25 Cryomodules are at SLAC!
- LCLS-II is well positioned to operate with average Q₀
 ≥2.7x10¹⁰ @ 16 MV/m long term.
 - 130 MV Energy gain CW per CM = 80 W to 2K
- Cryomodule Assembly is nearing completion
- Cryomodule Installation is going well

The next 18 months at SLAC will be very exciting!

The End

