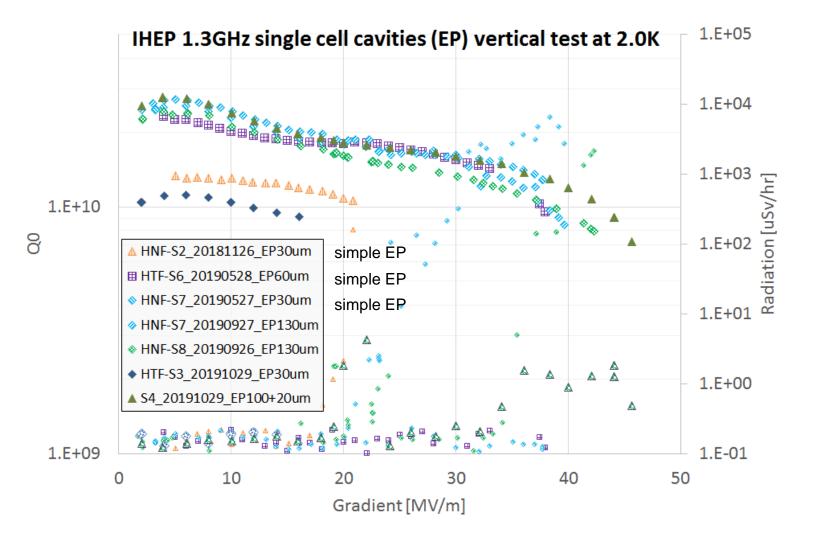


中國科學院為能物現為施 Institute of High Energy Physics Chinese Academy of Sciences

Recent Status of IHEP SRF R&D

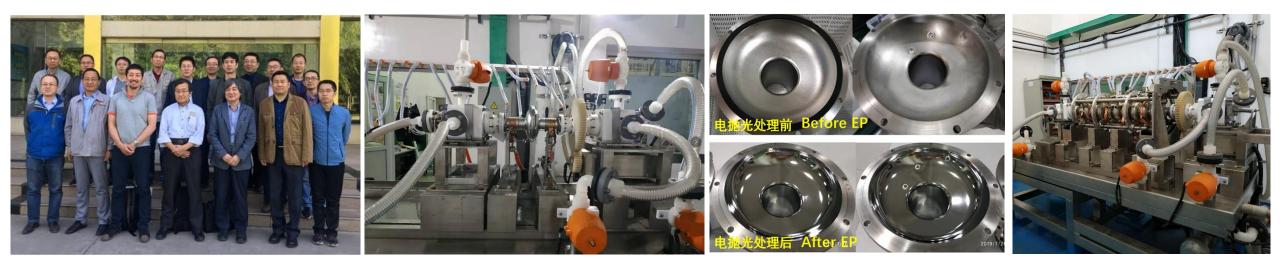

Jiyuan Zhai IHEP, China

October 31, 2019

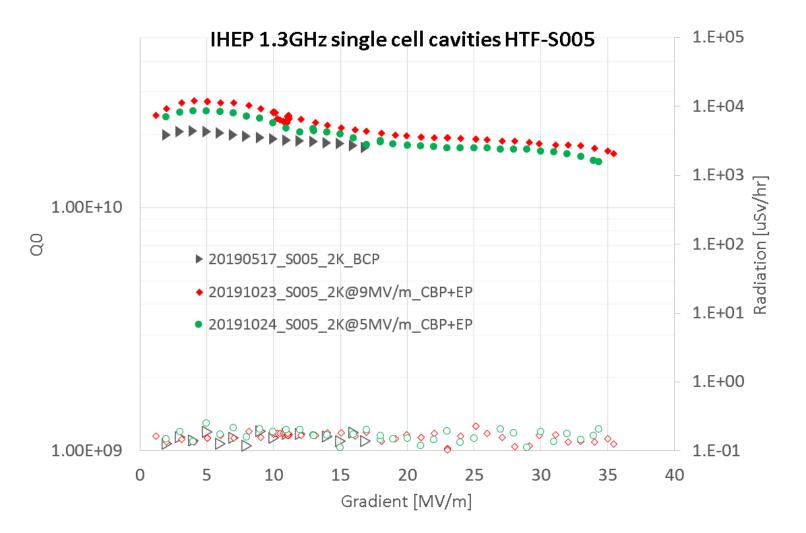
Outline

- 1.3 GHz cavity
- 1.3 GHz input coupler
- New SRF lab and facilities

EP FG Single Cells



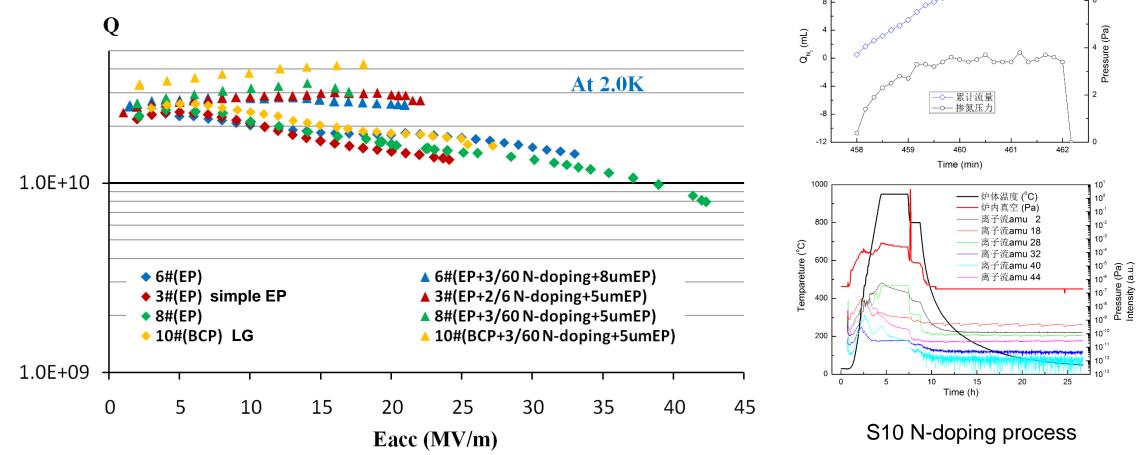
With IHEP's newly developed EP tool (China's first practical EP tool), we are able to get ~ 40 MV/m (without CBP) for FG TESLA single cell cavities.


IHEP EP Facility at Ningxia

- A horizontal EP facility was developed at IHEP in collaboration with KEK.
- Can treat various types of cavities: 500 MHz 1-cell, 650 MHz up to 5-cell, 1.3 GHz up to 9-cell.
- Five TESLA single cell cavities reached 38 ~ 45 MV/m after EP with standard ILC recipe.
- 9-cell cavity EP commissioning will start soon. Target: 40 MV/m for ILC (with 14 R&D 9-cell cavities).

KEK experts joint EP commissioning at OTIC, Ningxia (May 2019) Sample cavity Roughness (Ra) after EP: 300 nm

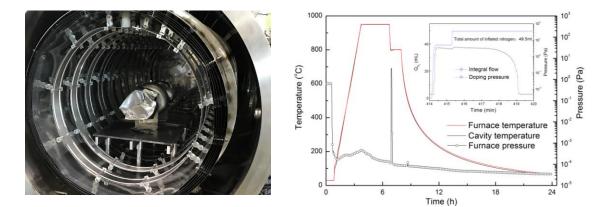
CBP Repair + EP FG Single Cell (S5)



CBP (with fine polishing step) 120 um + EP 20 um + annealing + EP 20 um

N-Doping Single Cells

Need to improve N-doping and light EP process to increase gradient and Q.

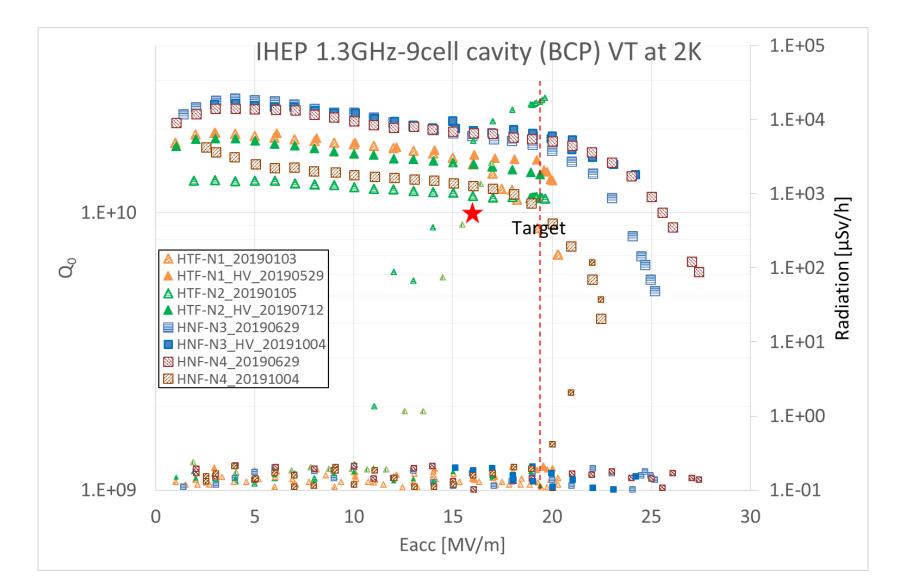

总充气量12.75 mL

12

Vacuum Furnaces for N-doping and Infusion

Small dual vacuum furnace. 300 mm diameter and 500 mm length. Heater placed in the outer vacuum, very high vacuum (< 2E-7 Pa)

Big furnace with cryo-pump.


1.3 GHz 9-cell Cavities

- 7 9-cell cavities already made for SHINE R&D. 4 cavities <u>BCP</u> and vertical tested. 11 cavities in fabrication.
- Four cavities laser welded with helium vessel. Will deliver to Shanghai for test module assembly.

BCP 9-cell Cavities w/o&w Helium Vessel

9

RF and Mechanical Quality Control

	Specification	1300-N001	1300-N002	1300-N003	1300-N004
Dumbbell shape error	≤ +/- 0.5 mm	± 0.4	± 0.4	± 0.4	± 0.4
Cavity length (after pre-tuning)	1283.40 +/- 3.0 mm	1284.55 mm	1283.19 mm	/	/
Cavity length in helium vessel	1283.40 +/- 3.0 mm	1283.56 mm	1282.30 mm	1280.94 mm	to be measured
Eccentricity (radius)	≤ 0.4 mm	no adjustment	no adjustment	no adjustment	no adjustment
Frequency bare cavity (vacuum, RT)	1298.2 +/- 0.1 MHz	1298.210 MHz	1298.160 MHz	1298.162 MHz	/
Frequency bare cavity (2K)	1300.2 +/- 0.1 MHz	1300.252 MHz	1300.199 MHz	1300.318 MHz	1300.280 MHz
Frequency dressed cavity (2K)	1300.2 +/- 0.1 MHz	1299.870 MHz	1300.018 MHz	1300.062 MHz	1300.200 MHz
Field flatness bare cavity	≥ 95 %	95%	98%	97%	96%
Field flatness dressed cavity	≥ 90 %	85%	94%	98%	98%
Leak rate	≤ 1.0e-8 Pa I/s	OK	OK	OK	ОК
HOM coupler FM Q _e (2K)	> 2.7E11	1.5E12, 3.5E13	3.7E12, 4.7E11	1.6E11, 2.1E12	to be measured
Dressed cavity gradient (BCP)	> 19 MV/m	20 MV/m	19.5 MV/m	23.2 MV/m	to be measured
Dressed cavity Q ₀ (BCP)	> 1.0×10 ¹⁰ @16 MV/m	1.50E+10	1.40E+10	1.90E+10	to be measured
Dressed cavity gradient (EP+N-dope)	> 19 MV/m	/	/	/	/
Dressed cavity Q ₀ (EP+N-dope)	> 2.7×10 ¹⁰ @16 MV/m	/	/	/	/

1.3 GHz Variable Coupler

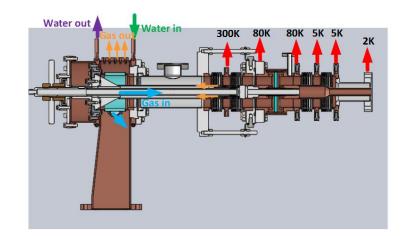
- Two 1.3 GHz TTFIII-type variable input couplers. Modified for 7 kW CW power. Can be used for ILC.
- High power conditioning at Shanghai soon (14 kW TW, 7 kW SW).

1.3 GHz Variable Coupler 《

Ceramic Brazing

Strength Test (>100 MPa)

	Specifications	Test Results	Notes	
Thickness of inner conductor Cu plating	150 ± 20 % μm	150 – 190 µm	bellow 30 %	
Thickness of outer conductor Cu plating	30 ± 20 % μm	30 – 40 µm	bellow 30 %	
RRR	30 - 80	24 - 26		
Thickness of TiN Coating	10 nm (7-15 nm)	20 - 40 nm		

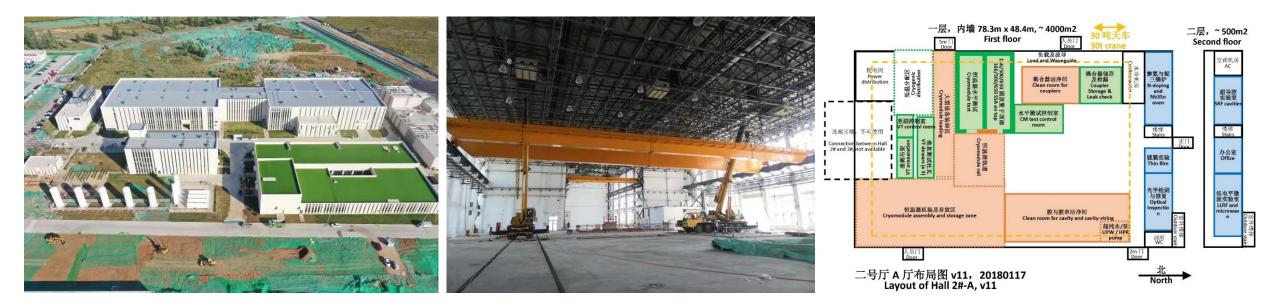

TiN Sputtering device and SEM section

High Power 1.3 GHz Variable Coupler

北京高能锐新科技有限责任公司

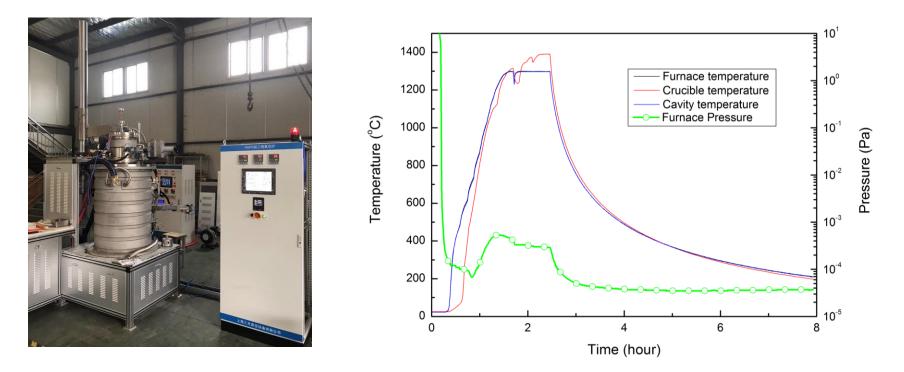
Beijing HE-Racing Technology Co., Ltd.

- Design for 70 kW CW power. Can be used for CEPC booster cavity (< 20 kW peak).
- High power conditioning in a resonance ring (up to 10 times of the 8 kW SSA power). Forward CW power 30 kW for 1 hour. Max power above 50 kW.

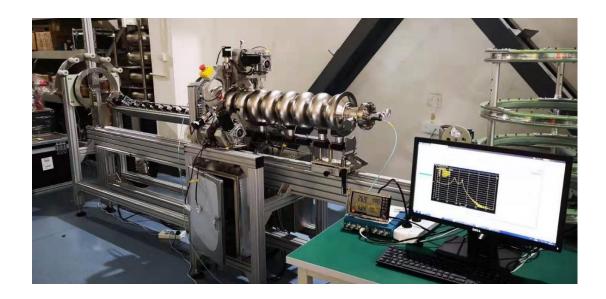

New SRF Lab and Facilities

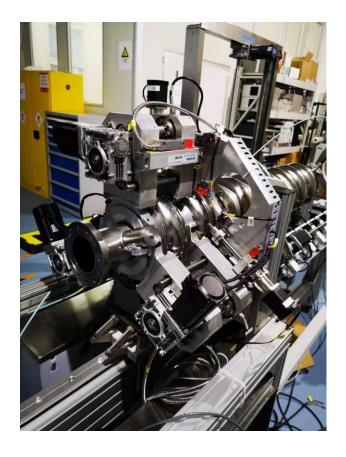
1. New SRF lab

- 2. EP facility
- 3. Vacuum furnaces for N-doping
- 4. Nb₃Sn furnace
- 5. Tuning machine
- 6. Inspection camera
- 7. TX-mapping
- 8. Second sound


IHEP New SRF Lab at Huairou

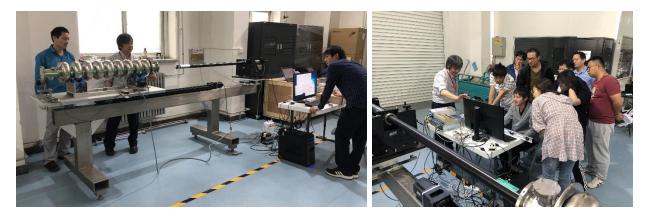
- 4500 m² SRF lab in PAPS, Huairou Science Park, north Beijing.
- Civil construction completed in summer.
- Test stands, clean rooms and other facilities installation and commissioning by mid 2020.
- 200 ~400 cavities (couplers) tests, 20 cryomodules assembly and horizontal tests per year.


Nb₃Sn Furnace


- 300 mm diameter, 500 mm height (for single-cell 1.3 GHz cavity studying)
- Heated to 1300 C for Nb3Sn film growing
- Coating pressure and temperature precisely controlled and measured
- Special rotating structure to improve the Nb3Sn film quality

IHEP New Tuning Machine (by PKU)

- Cavity frequency tuning and field flatness, length and eccentricity adjustment. Similar to DESY's design for XFEL.
- Need to improve automatic tuning procedure for higher efficiency (target: half day a cavity).



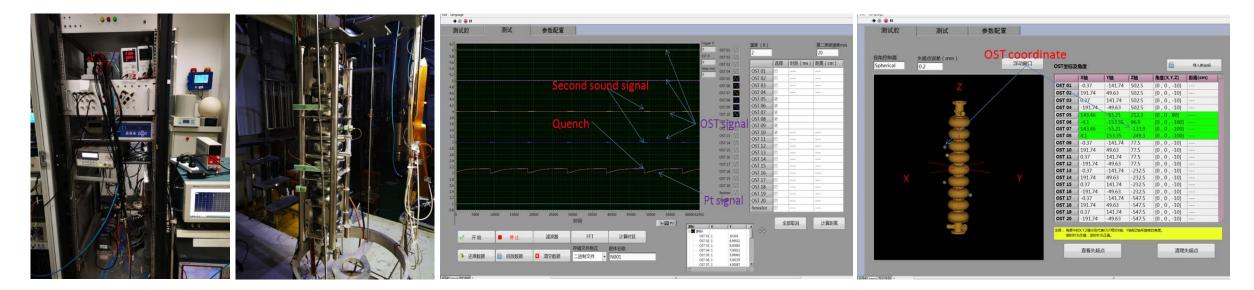
Inspection Cameras

- One 1.3 GHz Kyoto camera rent from KEK. Already inspected seven 9-cells and tens of single cells.
- One 650 MHz / 1.3 GHz inspection camera and grinder purchased from Japa (1.3 GHz camera head and grinder head will deliver soon).

<image>

Hayano-san helped to install KEK's 1.3 GHz camera and train IHEP people

Iwashita-san and Hayano-san helped to commission 650 MHz camera and grinder, and train IHEP people


TX-Mapping System

- For 9-cell cavity: 400 carbon resistor temperature sensors, 200 PIN photo diodes X-ray sensors
- System integration completed. Will commission in PAPS SRF lab in 2020.
- Thanks for the help of Kirk Yamamoto-san of KEK.

Second Sound Quench Detection System

- 20 OSTs will be used for the 1.3 GHz 9-cell cavity and 8 OSTs for single cell.
- Second sound signals from OST are amplified by two 12-channel amplifier. Acquisition system: NI9222 and NI9402. LabVIEW for data saving and quench position calculation.
- Thanks for the help of Carlo and colleagues of INFN-LASA.

Summary

- Most single cells achieved ~ 40 MV/m with improved fabrication techniques and newly developed EP tool. High gradient high Q 9-cell cavities expected next year.
- Rapid industrialization of cavities and input couplers for SHINE project (600 cavities). Cost reduction and mass production (200~300 cavities/couplers) preparation next year.
- IHEP's new SRF lab and infrastructures enable future ILC cavities, couplers and cryomodules mass production in China, as well as various fundamental and frontier research.
- We thank KEK for collaboration on SRF technology and infrastructures.