

University of Wuppertal
In-Situ EXAFS Investigation of
N<sub>2</sub> Treatment of Nb

P. Rothweiler\*, J. Kläs, R. Wagner, D. Lützenkirchen-Hecht\*\*

\* patrick.rothweiler@uni-wuppertal.de

\*\* dirklh@uni-wuppertal.de



#### Motivation





- Nowadays most Nb-cavities are treated with N<sub>2</sub> to improve Q-factor
  - "nitrogen-doping"
- Effects still not well understood: especially position of "doped" nitrogen in the Nb-lattice unclear
- Very low doses of N<sub>2</sub>
  - Too low for e.g. XRD
  - ⇒ in-situ measurements during doping procedure

\*Fermilab today

## X-Ray Absorption Spectroscopy





**XANES** = X-ray Absorption Near-Edge Spectroscopy **EXAFS** = Extended X-ray Absorption Fine-Structure

**Element Specific:** Absorption edges are element-specific

**Valence Probe:** XANES gives chemical state and formal valence of selected element.

**Local Structure Probe:** EXAFS gives atomic species, distance, and number of near-neighbor atoms around a selected element..

**Low Concentration:** concentrations down to 10 ppm for XANES, 100 ppm for EXAFS detectable!

**Various Samples:** samples can be solids, solutions, amorphous solids, soils, surfaces, etc.

**In-situ measurements:** Suited for *real in-situ studies* with time resolution!

## X-Ray Absorption Spectroscopy





- Measure energy-dependence of X-ray absorption coefficient  $\mu(E)$  of a corelevel of selected element (i.e. **Nb**)
- Good example of wave-particle dualism: Photoelectron acts like a wave!
- Interference effects on absorption coefficient
- Fourier-Transform of the oscillations gives bond length in R-space
- Main Idea: Inserted N-atoms will slightly modify interference pattern of Nb

#### Experimental setup







- In-situ heating chamber, fully remote controlled
- Kapton windows for X-ray measurements
- RT < T < 1200°C</li>
- p < 10<sup>-6</sup> mbar
   (at 900°C ca. 2x10<sup>-6</sup> mbar)
- Nb foils of 6 25 μm thickness
- Measured in transmission
- Treatment up to 30 mbar N<sub>2</sub> (Kr, Ar,...) for minutes ... to ... several hours
- Slightly higher pressure and time (= exposure) because of very small effects

#### In-situ Measurements: Time dependence





Phase 1: Heating in vacuum



- Plot Fourier-Trafo in R-Space
- Reduction in NN-amplitude
  - $\Rightarrow$  caused by lattice vibrations
- Constant after first minutes of baking
  - ⇒ no effects of e.g. poor vacuumconditions etc.

# Phase 2: N<sub>2</sub> - exposure

- Further reduction in NNamplitude caused by N-gas exposure
  - $\Rightarrow$  Effect of N<sub>2</sub> visible
- Uptake causes blurring

# Used model and EXAFS data fitting with two phases





- Nb: bcc-crystal
- N<sub>2</sub>-uptake at octahedral interstitial site
- Neighboring atoms are (slightly) displaced



- Model of hard spheres
- Linear Fit of unit cells with and without N<sub>2</sub>
- Up to 2% of unit cells with N<sub>2</sub>
  - Bcc (2 Nb-Atoms/unitcell): 1 atom%
- Octahedral site competitive with ionic N-size of 70 pm

## Ex-situ measurements at Room-Temperature: Exposure dependence





- Verification of in-situ measurements
- Fit of the first two coordination shells
- Investigation on effect of different exposure intensities on Nb-Nb bond distances ( $R_1$ ,  $R_2$ ) and mean squared displacement ( $\sigma_1^2$ ,  $\sigma_2^2$ )
- Increases agree qualitatively with model
- **But:** large uncertainties

## High precision (ex-situ) EXAFS measurements at 100 K





- High precision
  - Reduction of lattice vibrations
  - Smaller uncertainties in R
  - Smaller σ² (linear shift)
- Main result:

Trends from RT measurements are fostered

# Summary and Outlook



- N<sub>2</sub>-uptake on interstitial octahedral sites
- Investigations of time- and pressure-dependence
- In- and ex-situ measurements agree with each other
- 100 K measurements show same trends
- Kr- and Ar-uptake: do not show any detectable effects

#### Next steps:

- Improvement of fit model
  - More shells / paths
- Measurements with samples from real cavities using surface sensitive EXAFS
  - ⇒ samples from the community are welcome!



### Acknowledgements









• DELTA (TU Dortmund, Germany)



PSI – Villingen, Swiss Light Source



DESY photon science Hamburg



BMBF: financial support (05H15PXRB1, 05H18PXRB1, 05K16PX1)



MWF NRW: financial support

#### Addional material: Nb - foils





X-ray diffraction, E = 16 keV:

Polycrystalline, textured foils



SEM:

Smooth, wavy surfaces