DE LA RECHERCHE À L'INDUSTRIE

Research Program for improving SRF cavity performances at CEA

Déchiffrer les rayons de l'Univers

Thomas Proslier 31/10/2019

Team:

Technician: A. Four, E. Fayet, G. Jullien, C. Servouin

Scientist: S. Berry, C. Antoine, F. Eozenou, T. Proslier

Ph.D.: Sarra Bira (IPNO/CEA), Y. Kalboussi (CEA)

Future Post-doctorant.

Internship: R. Dubroeucq, S. Habhab

Collaborations:

KEK: T. Saeki, T. kubo, Marui. (thin films, theory, electropolishing)

IPNO: D. Longuevergne, M. Fouaidy

HZB: O. Kugeler

DESY: M. Wenskat

CERN: G. Rosaz, S. Calatroni (thin films)

STFC: R. Valizadeh (thin films, Nb3Sn)

INFN: C. Pira (thin films)

JLAB: A-M. Valente, G. Ciovati, D. Patshupati (Bulk Nb, thin films)

FNAL: S. Posen, A. Romanenko, A. Grassellino (Bulk Nb, Nb3Sn)

ANL: A. Glatz – Theory (theory simulations)

IIT: J. Zasadzinski

TRIUMPH: T. Junginger (measurements)

Cornell: M. Liepe (Nb3Sn)

- Unique Characterizations tools with predictive power
 - ➤ Point Contact Tunneling spectroscopy
 - Magnetometry
- Thin films developements
- Chemistry: Vertical electropolishing

IRFU/Service LCWS - 2019 Page 3

- Unique Characterizations tools with predictive power
 - ➤ Point Contact Tunneling spectroscopy
 - Magnetometry
- Thin films developements
- Chemistry: Vertical electropolishing

IRFU/Service LCWS - 2019 Page 4

Tunneling spectroscopy: what do we measure and why?

Measure the fundamental superconducting parameters:

$$\Delta$$
, T_C , H_{C2}

- Measure non-ideal signature: Γ.
- All of these are directly correlated to SRF cavity performances
- Cartography

Tunneling spectroscopy: what do we measure and why?

Cartography

- N doping: Homogeneous bulk Nb gap values on the surface
- Hot spot: Regions with low superconducting gap values that can be fitting with normal metal regions on the surface (presumably hydrides)

The Point Contact system at CEA

- Temp: 1,4 K Magnetic field: 6 T
- Variable junction resistance: $2.10^2 2.10^9 \Omega$.
- Cartography: 10 µm − 1 mm
- Fast measurements: 100-300 jonctions/5hrs
- Transport (RRR, Tc vs H applied...)
- Hall Effect
- Sample size: 10x10 mm

Used for Nb/Cu, bulk Nb doping, Nb3Sn, mutlilayers etc...

Nb₃Sn/Nb (Cornell)

- Wupperthal method: diffusion of Sn in a Nb cavity
- $Nb_3Sn Q_0$ at $4.2K \sim Nb Q_0$ at 2K
- Moderate increase of Q_0 between 4K to 2K -> Non-BCS
- Q_0 decrease at ~ 6 K

Have we reached the limits of Nb₃Sn?

Nb₃Sn/Nb (Cornell) - PCT

- $\Delta > Nb$ and Γ/Δ is small
- -> Quality factor @ 4K is $\sim Nb$ @ 2K

- But pockets of Nb rich phases:
- Lower Tc and Δ
- Carbon contamination

Nb₃Sn/Nb (Cornell) – TEM

- phase riche Nb ~ 17.5%
- Interface Nb-Nb₃Sn, grain boundaries
- Pockets near the surface

- Crystallite $\sim 200\text{-}300 \text{ nm} (XRD)$
 - 60% Nb₃Sn

Nb₃Sn/Nb (Cornell - FNAL) - PCT

Quench field vs Average Gap

For large $K (= \lambda/\xi = 24)$:

$$H_{C1} = \frac{1}{\sqrt{2}\kappa} (Ln[\kappa] + 0.08) H_C$$

$$H_C = \sqrt{\frac{N_0}{\mu_0}} \cdot \Delta \cdot e$$
 $N_0 = 2.5 \cdot 10^{35} \text{ e}^{-7} \cdot \text{spin} / m^3$

$$H_{SH} = 26 \pm 2.5 \Delta mT/meV$$

Bulk Δ for Nb3Sn is 3.4 to 3.5 meV

-> Max expected Quench field is $\sim 91 \pm 2 \text{ mT} = 22 \text{ MV/m}$

Nb₃Sn/Nb (Cornell) - Magnetometry

The critical field measured by Magnetometry correlates with RF tests Quench fields

- Unique Characterizations tools with predictive power
 - ➤ Point Contact Tunneling spectroscopy
 - Magnetometry
- Thin films developements
- Chemistry: Vertical electropolishing

Thin films developements at CEA

Set up of the ALD laboratory

- 7 chemical precursors
- Temperature up to 500°C
- RGA and QCM in-situ monitoring
- Design to fit 3 and 1,3 GHz cavities
- Fully automated
- Deposition homogeneity < 1%

Thin films developements at CEA

Deposition on BCP, EP bulk Nb samples + Post annealing treatment in High Vacuum

- Up 1000°C
- 1 inch samples
- 10⁻⁶ mbar at 800°C
- RGA and gaz feedthroughs
- Set for Insitu X-ray studies

Soon on 3GHz and 1,3 GHz cavities

Annealing

- Up 1000°C
- Up 1,3 GHz cavities
- 10⁻⁶ mbar at 800°C
 - RGA and gaz feedthourghs

- Unique Characterizations tools with predictive power
 - ➤ Point Contact Tunneling spectroscopy
 - Magnetometry
- Thin films developements
- Chemistry: Vertical electropolishing

Chemistry: Vertical electropolishing

Program FJPPL: collaboration KEK + marui

- ➤ Vertical Electropolishing mono cell 1,3 GHz cavity: 37,5 MV/m without baking
- Vertical Electropolishing 9 cell 1,3 GHz cavity: On Going...

- > Future: EPV on 704MHz cavity
- > Real time multiple point thickness measurements during chemistry

Page 17

Summary

Characterization:

- Two unique set of characterization tools with predict power for RF cavity tests
 - > Enable testing recipes/surface treatments/heterostructure on coupons prior to cavity tests
 - Faster turner over and phase space exploration of growth parameters etc...

Thin film growth:

- Set up ready to deposit on coupons, 3 and 1,3 GHz cavities
- > Study influence on RF properties of heterostructures made by ALD
- ➤ Post annealing capalities for samples and cavities

Vertical Electropolishing:

- Very good results on 1,3 GHz monocell cavities
- On Going optimization effort on 9 cells and 704 MHz cavities

The END