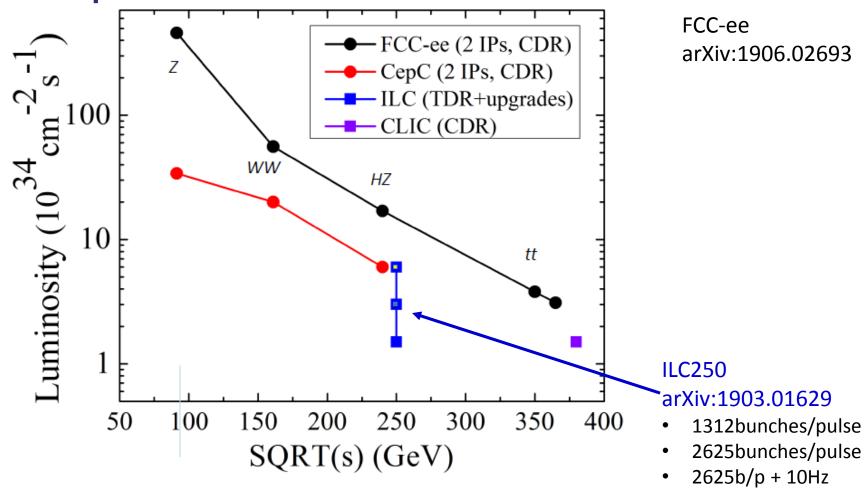

Status of the undulator-based positron source

October 31st, 2019

Sabine Riemann, DESY, Andriy Ushakov Gudrid Moortgat-Pick (Hamburg U), Peter Sievers (CERN)

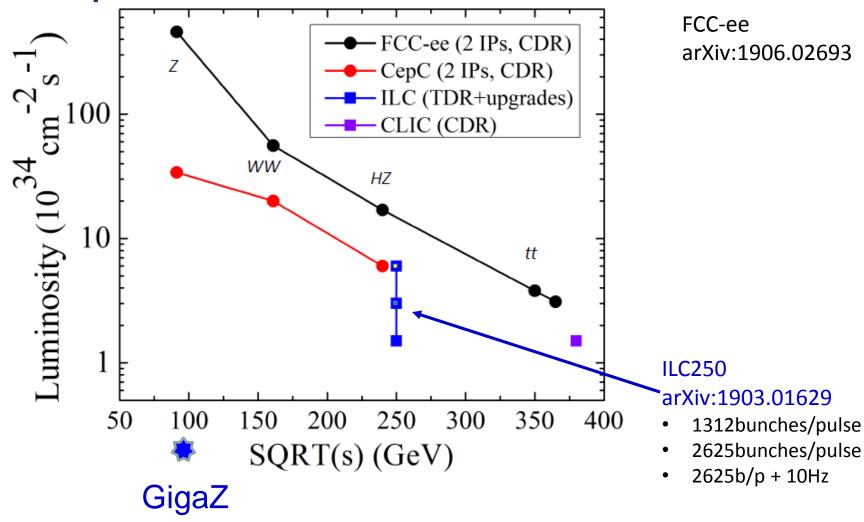
Outline

- Target design and cooling with respect to ILC250 and GigaZ
 - Undulator issues
 - Target
- OMD
- Dump of photon beam
- Summary



What is new since 2018?

- Resources
 - DESY e+ source group decreased
- To Do List is known since 2017
 - Prototyping (radiation cooling, spinning wheel, magn. bearing)
 - OMD
 - Photon beam dump
- FCC-ee and CEPC are serious competitors → ILC250 + GigaZ are important



Comparison of Iuminosities

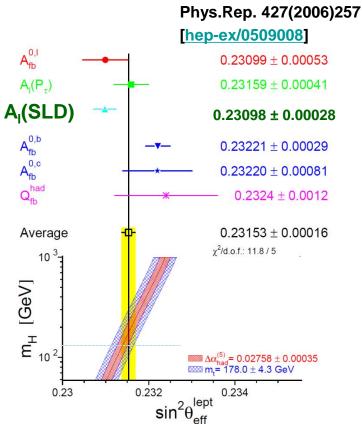
Comparison of Iuminosities

- FCC-ee: up to 5×10¹² Z bosons expected (TeraZ)
- ILC-GigaZ: up to 10⁹ Z bosons per year GigaZ: see talk by Yokoya-san, this workshop, and <u>arxiv:1908.08212</u>

GigaZ vs FCC-ee??

Considerations on the complementarity of ILC250/GigaZ and FCC-ee can be found in <u>arXiv:1905.00220</u>

More details about GigaZ – see R. Poeschl's talk at LCWS19


Lesson from LEP/SLD: Measurement of $sin^2\theta_{eff}$

- LEP (circular collider)
- Unpolarized e+, e- beams, 17x10⁶ Z events
- SLD (linear collider)
- Polarized electron beam, 5x10⁵ Z events

$$A_{\rm LR} = \frac{2(1 - 4\sin^2\theta_W^{\rm eff})}{1 + (1 - 4\sin^2\theta_W^{\rm eff})^2}$$

GigaZ

- Polarized e+ and e- beam
- Up to 10⁹ Z events per year
- Expect $\Delta \sin^2 \theta^{lept}_{eff} \sim 10^{-5}$

With FCC-ee (up to 5×10¹² Z events) $\Delta \sin^2 \theta^{lept}_{eff} \sim 10^{-6}$ is expected

SLC measured $\sin^2 \theta_{eff}$ better than LEP! Beam polarization substantially improves precision!

Left-Right Asymmetry A_{LR}

$$A_{\text{LR}} = \frac{A_{\text{LR}}^{\text{meas}}}{\left\langle P_{\text{eff}} \right\rangle} = \frac{\sigma_{\text{LR}} - \sigma_{\text{RL}}}{\sigma_{\text{LR}} + \sigma_{\text{RL}}} \cdot \frac{1}{\left\langle P_{\text{eff}} \right\rangle} = \frac{N_{\text{LR}} - N_{\text{RL}}}{N_{\text{LR}} + N_{\text{RL}}} \cdot \frac{1}{\left\langle P_{\text{eff}} \right\rangle}$$

- Essential for precise A_{LR} measurement with 10⁸-10⁹ Z events:
 - − Uncertainty of polarization measurement $\Delta P/P \le 0.1\%$ is required
 - This can be reached with polarized positron beam; $\Delta P_{eff} < \Delta P_{e}$
 - Although e+ polarization increases the 80-90% e- polarization only to a slightly higher effective polarization P_{eff}, error propagation decreases substantially the uncertainty of the resulting effective polarization
 - using all 4 initial helicity combinations \rightarrow determine P and A_{LR} simultaneously

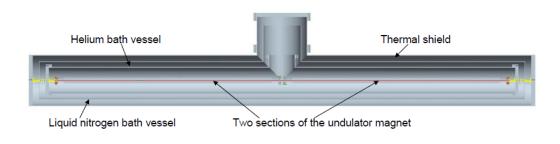
$$A_{LR} = \sqrt{\frac{(\sigma_{++} + \sigma_{-+} - \sigma_{+-} - \sigma_{--})(-\sigma_{++} + \sigma_{-+} - \sigma_{+-} + \sigma_{--})}{(\sigma_{++} + \sigma_{-+} + \sigma_{+-} + \sigma_{--})(-\sigma_{++} + \sigma_{-+} + \sigma_{+-} - \sigma_{--})}}$$

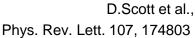
$$P_{e\pm} = \sqrt{\frac{(-\sigma_{++} + \sigma_{-+} + \sigma_{+-} - \sigma_{--})(-\sigma_{++} \pm \sigma_{-+} \mp \sigma_{+-} + \sigma_{--})}{(\sigma_{++} + \sigma_{-+} + \sigma_{+-} + \sigma_{--})(+\sigma_{++} \mp \sigma_{-+} \pm \sigma_{+-} - \sigma_{--})}}$$

→ Positron polarization is extremely helpful, especially at GigaZ

Benefit of polarized e+ and e- beam

• higher effective luminosity with the 'right' helicity combination of initial states: $L_{eff}/L = 1-P_{e-}P_{e+}$


→ with P(e-,e+) = (\pm 0.9; \mp 0.3) L_{eff} is higher by factor ~1.3


- Improved discrimination and control of background processes
 - each of the 4 combinations of initial e+ and e- helicity states can be explicitly realized in collisions
- If both beams are polarized, systematic effects (time-dependent effects, correlations or a bias in the polarimeter measurement) can be much better controlled, and their impact on the uncertainty of observables can be substantially reduced
- In case of deviations from the Standard Model predictions, polarization of both beams enhances the sensitivity to new phenomena
- An (additional) independent determination of beam polarization and leftright asymmetries is possible only if both beams are polarized.
- also the zero polarization of an unpolarized positron beam must be confirmed to avoid any bias in the physics analyses

Superconducting helical undulator

- Prototype developed at RAL
 - 2 unduator modules of 1.75m in 4m cryomodule

- Parameters
 - Undulator period, $\lambda_U = 11.5$ mm
 - Undulator strength K \leq 0.92 (B_{max} \leq 0.86T)
 - Beam aperture (diam.) 5.85mm
 - Max 231m active undulator length available (132 undulator modules
 ⇔ 66 cryomodules]
 - Quadrupoles every 3 modules \rightarrow total length of undulator system is 320m

-ilr

ILC250 and GigaZ

- Undulator K and length optimization to achieve Y = 1.5e+/e-
 - efficiency of e+ generation depends on photon energy

first harmonic: $E_{1\gamma} \sim \frac{E_e}{\lambda_u(1+K^2)} \rightarrow \text{low K}$ increases photon energy

- Number of photons $N_{\gamma} \sim \mathbf{L} \cdot \frac{K^2}{\lambda} \rightarrow \text{low K gives less photons}$

ILC250:

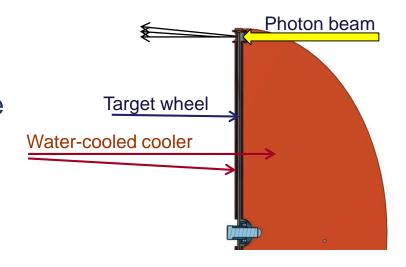
- 125GeV e- beam requires high K and maximum active undulator length of 231m
 - Upper half of energy spectrum is emitted in cone ~1/ γ masks are necessary to limit the energy deposition in the undulator walls to 1W/m (see Khaled's talk)

GigaZ: see arXiv:1908.08212

- 3.7+3.7 Hz scheme: use 125GeV e- beam for positron production, alternating with 45.6GeV beam for physics
- A 45.6GeV e- beam has low power, photon energy is low → no problem for target. But energy deposition in undulator wall has to be checked.

e+ source parameters

		ILC2	250	GigaZ			
Electron beam energy	GeV	126.5					
Active undulator length L _{und}	m	231					
		With FC With QWT					
Undulator K		0.85	0.85 0.92				
Photon energy (1 st harmonic)	MeV	7.7 7.2					
Average photon beam power	kW	62.6	72.2	53.5			
Distance target – middle undulator	m	401					
Photon beam spot size on target (σ)	mm	1.2 1.45					
Average power deposited in target (1312 bunches/pulse)	kW	1.94	2.20	1.62			
(2625 bunches/pulse)	kW	3.88	4.40	3.23			
Peak energy deposition density in target (1312 b/pulse)	J/g	61.2	59.8	59.8			
2625 b/pulse)	J/g	92.6	90.4	90.4			
Positron polarization	%	~30					


S. Riemann, LCWS 2019

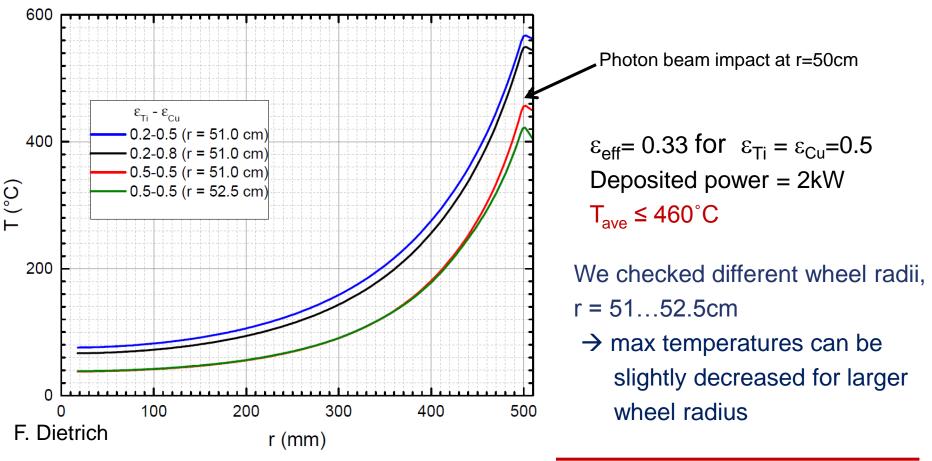
Target for the undulator based e+ source

- Ti alloy wheel, Ø 1m, spinning in vacuum with 2000rpm (100m/s tang speed)
- ILC250, GigaZ: E(e-) = 125GeV
 - Photon energy is O(7.5 MeV);
 - target thickness of 7mm to optimize power deposition and e+ yield
- Target cooling
 - T⁴ radiation from spinning wheel to stationary water cooled cooler
 - Peak temp in wheel ~550°C for ILC250, 1312bunches/pulse ~500°C for GigaZ, 1312bunches/pulse

assuming the wheel is a full Ti alloy disk (~simple design solution).

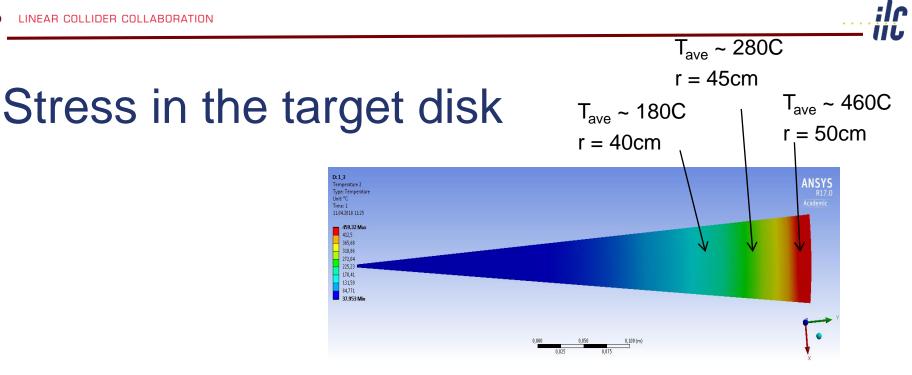
Temperature distribution in target wheel

- Average energy deposition in target ~2kW (ILC250, ILC500)
- ANSYS simulations for radiative cooling of target wheel
 - Efficiency of cooling depends on emissivity of surfaces of wheel and cooler (ϵ_{Ti} and ϵ_{Cu})


Temperature distribution in target piece corresponding to 1 pulse length; ILC250

 $(\epsilon_{eff} = 0.33; \epsilon_{Ti} = \epsilon_{Cu} = 0.5)$ D:13 ANSYS Temperature 2 Type: Temperature Unit: °C Academic Time: 1 11.04.2018 11:25 459,32 Max 412,5 365,68 318.86 272,04 225.23 Photon 178.41 131,59 84,771 beam pulse Wheel radius = 51cm 37.953 Min 0.100 (m F. Dietrich 0.025

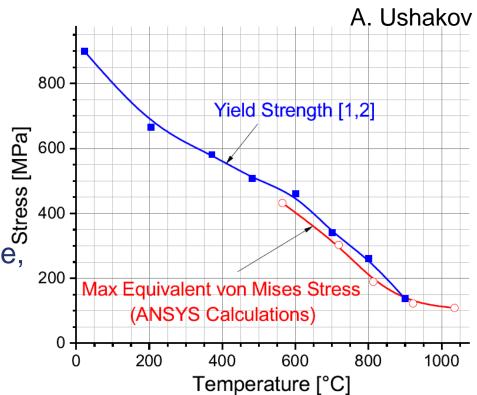
-ilc


Temperature distribution on target disk

Average temperature in wheel as function of radius r for different surface emissivities of target and cooler (Cu)

S. Riemann, LCWS 2019

Status undulator-based e+ source

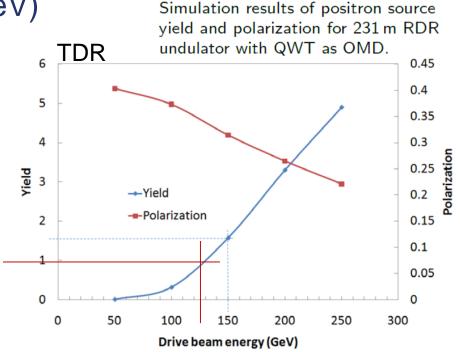


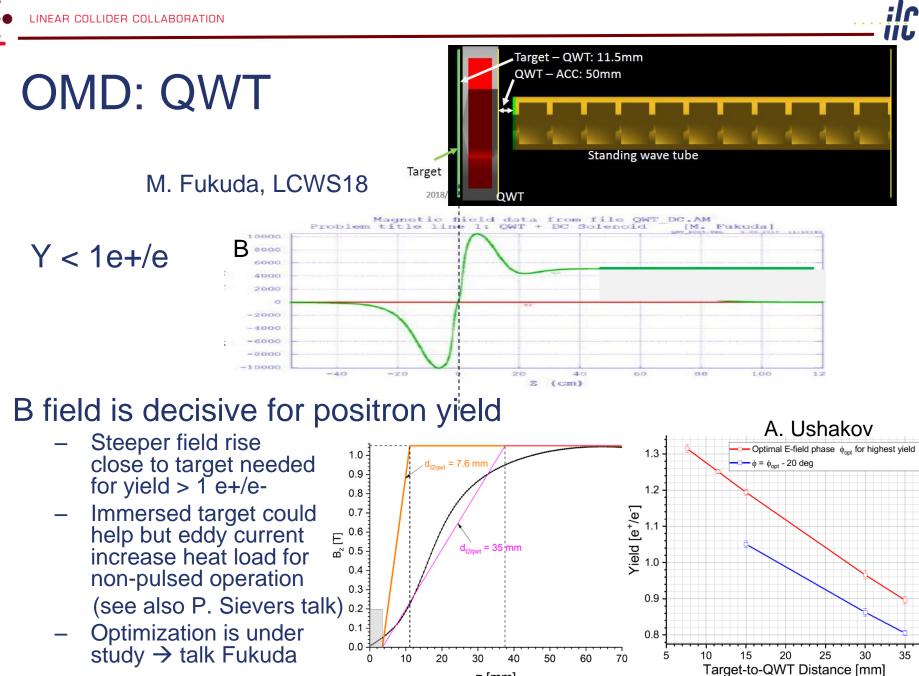
Large temperature gradient and cyclic load creates stress within disk, in particular in outer region (circumferential)

- Estimation of stress in target (ANSYS and 'by hand') showed max von Mises stress of 300-350MPa for ILC250 in case of a Ti alloy target disk. Rotation is included.
- Question: Does the target material resist the stress? ۲

- _ ilc
- Target and exit window material resistivity against high temperature and cyclic load was tested using an intense pulsed e- beam (14MeV, 3.5MeV) at the Microtron in Mainz (MAMI)
 - No substantial damage obtained although material was loaded below and above the phase transition limit
- Based on these tests
 Andriy Ushakov derived the
 stress limits depending on the
 temperature see his talk at
 Posipol18
- For ILC250, 1312 bunches/pulse, a 7mm thick Ti alloy disk can be cooled by thermal radiation.

Target design & luminosity upgrade

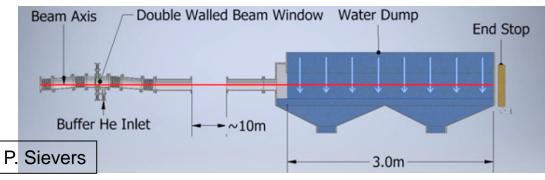

- 2625 bunches/pulse → High average temperature ~650°C in the rim region for full Ti disk
- At least expansion slots are required to reduce the stress in the outer rim
- Reduce max temperatures with the help of a special radiator
 - Radiator consists of material with high thermal conductivity for faster dispersal of heat
 - This option has been often discussed in the past with and without fins, connection of Ti rim with radiator etc. A design with radiator will work. Peter Sievers will present an update. However, final engineering design including tests is needed.


Positron yield

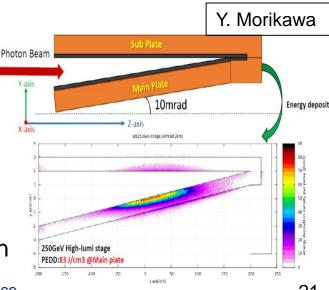
- Electron energy 125GeV (126.5GeV to compensate loss in undulator)
- Photon energy is O(7.5 MeV)

yield is ~1e+/e for E(e-) = 125GeV

Need to optimize/improve the e+ capture



z [mm]



Photon dump

- Narrow 60-120kW photon beam deposits only few percent in target
- Problem: high energy density of photon beam even at distance of O(km) from target
- Options under study
 - <u>Water dump</u>
 - Tumbling Ti window, He cooled acceptable (see load tests on foils 2017/18 with e-beam at MAMI)
 - Free falling water curtain to absorb the photon beam and to scatter particles at safe distance to Ti window

- Graphite dump
 - Shallow angle (~10mrad) to beam
 - No need for exit window
 - But: high peak load and graphite degradation

Summary

- e+ beam polarization is an important advantage of the undulator-based source. At GigaZ e+ polarization provides a substantial benefit for the measurement of the weak mixing angle (A_{LR} measurement)
- No showstopper seen for undulator-based source
 - However, the baseline undulator is at 'edge', for ILC250
 - GigaZ with (current) ILC250 has no problem with target
 - further studies for undulator parameters (?)
- Roadmap is clear; detailed engineering specifications for target wheel and experimental tests still to be done
 - Test cooling efficiencies by thermal radiation for a target piece
 - Develop full-size mock-up for the target to test the target rotation in vacuum
 - Photon dump design
- Resources
 - DESY e+ source group decreased:
 - Andriy and Felix left, SR retired; no successors
 - Khaled (PhD student) studies undulator (see his talk)

[••]

• Backup and old slides (mainly from posipol18),

S. Riemann

Upgrade to higher energies

No problem for nominal luminosity: PEDD and max temperatures do not exceed limit, target thickness could be optimized

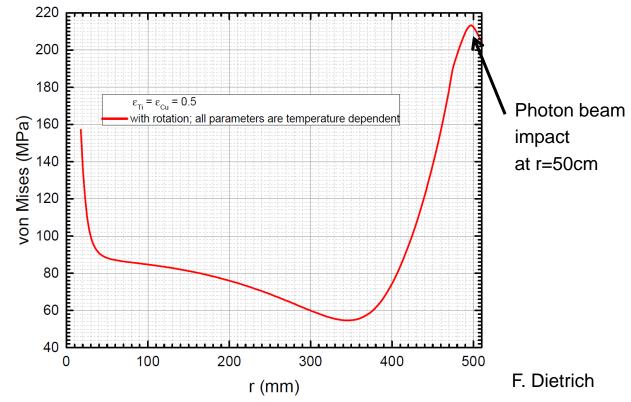
Electron beam energy	GeV	126,5	175 250			
Active undulator length	m	231	147			
Undulator K		0.85	0.66 0.45			
Photon yield	γ/e-	393	157	76.1		
Photon energy (1 st harmonic)	MeV	7.7	17.6	42.9		
Average photon beam power	kW	62.6	45.2 42.9			
Distance target – middle undulator	m	401	500			
Target (Ti6Al4V)thickness	mm	7	14.8			
Average power deposition in target	kW	1.94	3.3	2.3		
Photon beam spot size on target (σ)	mm	1.2	0.89	0.5		
Peak Energy Deposition Density (PEDD) in spinning target per pulse	J/g	61.0	42.4	45.8		
Polarization of captured positrons	%	29.5	30.8	24.9		

Upgrade to high luminosity (2625 bunches/pulse)

- Doubled energy deposition in target
- PEDD and temperature rise
 - − Pulse length: 0.727ms (1312 b/pulse) \rightarrow 0.961ms (2625 b/pulse)
 - \rightarrow Increased temperature amplitude DT per pulse by factor 1.5
 - i.e. ~ 60-80K (1312 b/pulse) → 90–120K (2625 b/pulse)
 - $-\Delta T$ depends on average T in target since specific cheat depends on T
- Average temperature
 - simple scaling: max T_{ave} [K] rises by ~2^{1/4} in comparison to nominal lumi

i.e. 460 C \rightarrow about 600 C for our ILC target

parameters ($\epsilon_{eff} = 0.3$)


- Larger temperature rise per pulse and low thermal conductivity complicate this simple scaling;
- − ANSYS sim (Felix Dietrich): . max $T_{ave} \approx 650 \text{ C}$ $\varepsilon_{eff} = 0.3$)
- peak temperature values increase to ~750C
- for ILC250, high luminosity; the average temperature as well as cyclic peak temperature seem acceptable but are close to edge (see talk of Andriy Ushakov)

Average stress in target, ILC250, 1312b/pulse

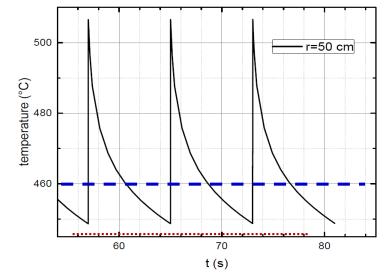
ANSYS simulations: Consider spinning target disc, thickness 7mm, r_{out} = 51cm ,beam hits target at r=50cm

- Material expansion \Leftrightarrow high thermal stress in beam impact region

Average von Mises stress along wheel radius r σ_{vM} < 220MPa

Dynamic stress at radius r

$$\sigma_{\rm H} = \frac{3+\nu}{8}\rho\omega^2 \left(1-\frac{r^2}{r_o^2}\right) \left(1-\frac{r_i^2}{r^2}\right)$$
$$\sigma_{\rm r} = \frac{3+\nu}{8}\rho\omega^2 \left(1+\frac{r_i^2}{r_o^2}+\frac{r_i^2}{r^2}-\frac{1+3\nu}{3+\nu}\frac{r^2}{r_o^2}\right)$$


 $r_o =$ outer wheel radius, $r_i =$ inner radius at shaft

- Max radial stress is located at $\sqrt{r_o}r_i$, i.e. more in the inner region where the T is low (assuming full disc)
- Hoop stress from rotation at the beam path (maximum temperature) is low, ~ 9MPa
- ANSYS calculations for detailed stress evaluation required

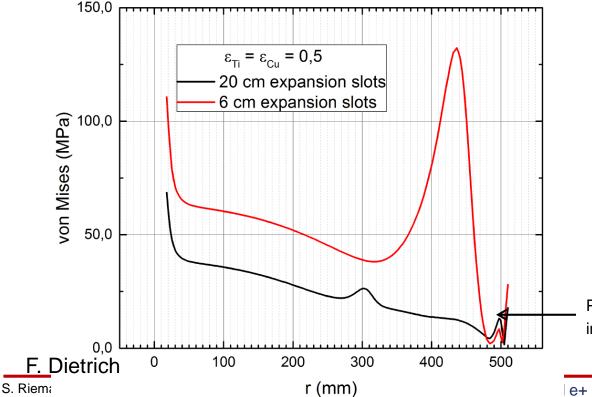
Cyclic load at the target - peak temperature

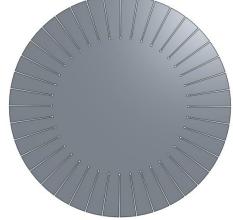
- Max temperature evolution along rim
 - if wheel has equilibrium temperature distribution reached, photon pulse increases temperature up to ~510C (2kW, ε_{eff} = 0.33 for $\varepsilon_{Ti} = \varepsilon_{Cu}$ =0.5)

Resulting peak stress at beam path

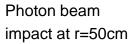
- Time of energy deposition is too slow, intensity too small to create shock waves, thermal expansion along z is possible, restricted along r
- Estimate stress by pulse: $\sigma_{peak} = E \alpha \Delta T / (1-v)$

- In total:


 σ_{peak} < 220MPa (ave) + 75MPa (pulse) ≈ 300MPa (full target disk)


- The stress is compressive

Average stress in target, ILC250, 1312 b/pulse


ANSYS simulations: Consider consider target disc, thickness 7mm, r_{out} = 51cm, beam hits target at r=50cm

- Expansion slots (6cm and 20cm long)
- → stress substantially reduced, $\sigma_{vM} \le 20$ MPa in rim region

Expansion slots require synchronization with beam e- pulses timing constraints!

Expansion slots & synchronization (1)

Without synchronization:

- Ignore the gaps ⇔ lumi is not constant over pulse.
- Rim temperatures of 750C expand the material by ~2.3 cm → slots

Slot width	#of slots	Distance betw	veen slots at	
[mm]		r=50cm [mm]	r=40cm [mm]	
0.5	46	68	28	
0.25	90	35	14	
0.1	230	13.8	5.5	

• smaller beam spot size at higher energies \rightarrow less e+

		ILC250	ILC350	ILC500
Spot size, σ	mm	1.2	0.89	0.5
Max e+ loss per bunch, 0.25mm slots	%	13	18	31
Max e+ loss per bunch, 0.1mm slots	%	5	7	12

Expansion slots & synchronization (2)

At IL250, the loss of e+ seems acceptable. But at higher energies and higher lumi?

- What is acceptable for the machine feedback systems?
- Stability of wheel with many slots?
- Insert slots that provide the required target thickness without missing e+
 - Inclined gaps → photons pass always roughly the same target thickness
 - Potential yield fluctuations as well as engineering aspects still to be studied

High-temperature stress in target

- For ILC high lumi, stress could exceed limits, at least, the safety margin is small
- Possible material degradation: plastic deformation, creep
- Creep:
 - Slow deformation under influence of mechanical stresses.
 - It can be result of long-term exposure to high stress levels which are below the yield strengths; in the worst case it could cause failure
 - Creep deformation depends on material's properties, exposure temperature and the applied structural load.
 - Creep deformation is time-dependent it does not occur suddenly.
 The strain accumulates as a result of long-term stress
 - For temperatures > 0.4 T_{melt} [K] the possibility of creep effects should be taken into account, in particular if the exposure is over a long time (Ti6l4V: 0.4 T_{melt} \approx 750K)
- The operational conditions for the target wheel differ from that for creep and load tests. Are creep effects important for wheel operation?

Data sheet for high temperature and high strength Ti alloy SF61

https://www.amt-advanced-materials-technology.com/materials/titanium-high-temperature/

Material composition

Chemical Composition: Ti-5.9AI-2.7Sn-4Zr-0.45Mo-0.35Si-0.22Y

Mechanical properties

UTS	YS	El	UTS	YS	El	Fatigue	Residual	E-Modulus	Microstructure
	Rt			600°C		760°C	Strain*		
Mpa	Mpa	%	Mpa	Mpa	%	Mpa, 10^7	%	Gpa	
1068	1050	11	752	655	16	195	0.029	120	Equiaxed, a+btrans
1058	989	14	674	553	23	176	0.079	121	Bi-modal
1040	945	12	654	510	15	142	0.082	119	Equiaxed, a+btrans
1020	910	12	560	485	15	138	0.154	116	-
	Mpa 1068 1058 1040	Rt Mpa Mpa 1068 1050 1058 989 1040 945	Rt Mpa Mpa % 1068 1050 11 1058 989 14 1040 945 12	Rt Mpa Mpa Mpa % 1068 1050 11 752 1058 989 14 674 1040 945 12 654	Rt 600°C Mpa Mpa Mpa Mpa 1068 1050 11 752 655 1058 989 14 674 553 1040 945 12 654 510	Rt 600°C Mpa Mpa % 1068 1050 11 752 655 16 1058 989 14 674 553 23 1040 945 12 654 510 15	Rt 600°C 760°C Mpa Mpa % Mpa Mpa % Mpa, 10^7 1068 1050 11 752 655 16 195 1058 989 14 674 553 23 176 1040 945 12 654 510 15 142	Rt 600°C 760°C Strain* Mpa Mpa % Mpa % Mpa, 10^7 % 1068 1050 11 752 655 16 195 0.029 1058 989 14 674 553 23 176 0.079 1040 945 12 654 510 15 142 0.082	Rt 600°C 760°C Strain* Mpa Mpa % Mpa Mpa % Gpa 1068 1050 11 752 655 16 195 0.029 120 1058 989 14 674 553 23 176 0.079 121 1040 945 12 654 510 15 142 0.082 119

*After creep exposure at 600°, 150 Mpa, 100h.

Preliminary conclusion concerning high-T stress effects:

- further studies necessary; contact/support from material experts
- Ignore creep?
 - − Creep models: Larger grains ⇔ less creep
 - MAMI: high T and long irradiation increases grains,
 - MAMI: irradiation time is hours up to day, not weeks