# Undulator Positron Source Capture Simulation

KEK M. Fukuda

# Simulation of a positron source for undulator method

I am developing start-to-end simulation programs for ILC positron source.

The tracking of positrons up to the exit of Capture section (125MeV) can be simulated now.



Gamma-ray generation: calculated by K. Yokoya

Positron generation at a target --- Capture section (125MeV): calculated by M. Fukuda

Tracking of positrons after Capture section: T. Okugi

A. Ushakov-san has continued the simulation of Undulator ILC positron source all the time.

#### **Tracking Simulations**

Positron profile

#### simulated by Andriy Ushakov

#### Used parameters are:

- \*126.5 GeV e- beam
- \* 231 m undulator with K = 0.85
- \* 401 m distance between the middle of undulator and the target
- \* 7 mm target thickness (Ti6Al4V)
- \* QWT with 1.04 T field solenoid downstream the target
- \* Deceleation E-field downstream QWT

# after 125MeV NC linac

Z [mm]



#### simulated by M. Fukuda

Target: Ti alloy (Ti-6AL-4V), 7mm

QWT: 1.04T ACC SOL: 0.5T

ACC SWx2: Eacc 15.2MV/m ACC TWx3: Eacc 7.2MV/m





Analyzed by T. Okugi

LCWS2018: M. Fukuda

# Difference between Fukuda's simulation and Ushakov-san's simulation

- The positron yield between Ushakov-san's simulation and my simulation is different in undulator scheme.
- The difference is caused by the difference of the model of the QWT magnetic field and the accelerating tubes.
- Fukuda's simulation
  - QWT and the solenoid field designed by Wanming Liu.
  - Capture linac: two SW and three TW accelerating tubes.
- Ushakov-san's simulation
  - QWT and solenoid field: Simple shape like trapezoid.
  - Capture linac: one long SW accelerating tube.
- I could reproduce the Ushakov-san's result by using 201 Ushakov-san's model of QWT and an accelerating tube.

# Placement of the QWT and an accelerator (Fukuda)

I input this geometry in my simulation.

This placement is different as that of Ushakov-san' simulation.

Positrons are accelerated by two SW accelerating tubes and three TW accelerating tubes.



# Placement of the QWT and an accelerator (Ushakov)

To reproduce the Ushakov-san' result, I changed the geometry in my simulation.

This placement is same as that of Ushakov-san' simulation.

Positrons are accelerated by one SW accelerating tube with the length of ~16.8m.





## Magnetic field of QWT and Solenoid (Fukuda)

The magnetic field data was calculated by POISSON.

This 2D map data of magnetic field is used in my simulation.

QWT (Peak 1.04T) + 0.5T (capture section)

After z = 444.5mm, Bz = const. (~0.51T), Br = 0





# Magnetic field of QWT and Solenoid (Ushakov)

The magnetic field model is different between Ushakov-san' simulation and mine.

Bz profile is like trapezoid in Ushakov-san's simulation.

QWT (Peak 1.04T) + 0.5T (capture section)



#### Magnetic field of QWT and Solenoid (Simple shape)

#### I input the magnetic filed of simple shape like trapezoid.

Bz=0 at the target rear surface(z=0)

Bz linearly increases up to 1.04T at QWT front (z=7.6mm)

Bz is 1.04T until QWT end (z=7.6+120 mm)

Bz linearly decreases up to 0.5T at ACC front (z=7.6+120+40 mm)

Bz is 0.5T after ACC front.

#### Input magnetic field (r=0, on z-axis)



#### Input magnetic field (r=5mm, off-axis)



## Parameters of the simulation

To reproduce the Ushakov-san' result, I simulated with below condition.

Input: Gamma-rays from Undulators calculated by CAIN (Yokoya's calculation)

Number of Gamma-rays is 4,025,930 which are generated from 10000 electrons with 125GeV.

Target: Ti6Al4V, 7mm

OMD: **QWT (Peak 1.04T) + 0.5T (capture section)**The magnetic filed was calculated by equations (Simple model)

Accelerating tube : SWx1 (~16.8m)  $Ez = E0*2*sin(omegaspace*(z-zfrontRF)*cos(omegatime*t+Ephase) \\ omegaspace = k = 2\pi/\lambda \\ omegatime = \omega = 2\pi f = 2\pi c/\lambda \\ \lambda=230.60958mm \text{ (L-band)} \\ 2*E0: 16.08MV/m$ 

# Detector position at Before RF1



#### **ACC Front**

Magnetic field: 2D map data (POISSON)
Z=167.6mm (BeforeRF1)

Ne+: 31877(Fukuda), 34970(Ushakov) difference: 10%

The e+ distributions are different.







#### **ACC Front**

Magnetic field: (Simple shape)

Z=167.6mm (BeforeRF1)

Ne+: 35865 (Fukuda), 34970(Ushakov)

difference: 3%

The e+ distributions become same shape. In angle distribution, there is difference in low angle part.

Transverse Momentum (Acc Front)







## Phase scan result

I scanned the accelerating phase to find the best phase. Number of positrons becomes maximum at 160deg.



## Phase scan of accelerators

The phase of the accelerator was optimized so that the number of positrons within +/- 7 mm in the longitudinal position distribution was maximized.

Positrons within +/-7mm from the peak of longitudinal position distribution are captured in DR.

The phases of all the accelerating tubes were simultaneously moved.



## **ACC Exit**

Phase: 160deg

The Pt and angle distributions become similar. The energy distribution is slightly different.

Ne+: 25460 (Fukuda), 26462 (Ushakov) difference: 4%







### **ACC Exit**

I adjusted the phase. Phase: 155deg

The distributions are more similar. Ne+: 25639(Fukuda), 26462 (Ushakov)

difference: 3%







# Positron profile

Energy vs time is similar to that of Ushakov-san's simulation.



#### simulated by Andriy Ushakov

#### Positron profile after 125MeV NC linac

#### Used parameters are:

- \*126.5 GeV e- beam
- \* 231 m undulator with K = 0.85
- \* 401 m distance between the middle of undulator and the target
- \* 7 mm target thickness (Ti6Al4V)
- \* QWT with 1.04 T field solenoid downstream the target
- \* Deceleation E-field downstream QWT



#### 160deg



# Summary

- I could reproduce the Ushakov-san' result by using the simple Bz profile like trapezoid.
- Hence the positron yield at DR decrease from 1.3 to 0.8 when the magnetic field of the QWT designed by W. Liu-san is used.
- This is not the final result. The optimization of the QWT and solenoid field and so on is not enough.
- I thank Ushakov-san for providing me with useful information and simulation data.