

Simulating the Energy Deposited and Temperature Rise in Photon Masks.

Khaled Alharbi, Sabine Riemann, Gudrid Moortgat-Pick, Andriy Ushakov

Hamburg University DESY KACST LCWS2019 Sendai, Japan 28 Oct -1 Nov 2019

Outlines

- ILC Undulator Structure
- Energy deposited at masks
- Mask design
- **FLUKA** simulation:
 - Energy density at mask
 - Power leaving the mask
- Conclusion

ILC Undulator structure at ILC250GeV

- * Two undulator modules with 1.75m each inserted in one cryomodule with 4.1m.
- *132 modules = 66 cryomodules
- * Quadrupoles are located after each three cryomodules in total 23 quads
- *Maximum 231m active undulator length,
 - 319.8 m total undulator length
- * Undulator aperture 5.85mm

Parameters	Values
Centre-of-mass energy	250 GeV
Bunch population	2.00E+10
Number of bunches	1312
Repetition rate (Hz)	5
Period (m)	0.0115
K value	0.85
Magnetic field	0.79 T
Undulator Inner radius	2.925 mm
Length of undulator module	1.75 m
Cryomodule Length	4.1 m
Number of Cryomodule	66
Total Active magnetic Field Length	231 m
Number of Quadrupoles	23
Quadrupole length	1 m
Total lattice length	319.828 m

ILC Undulator

* Problem: power deposition on the wall of a long undulator

* Superconducting undulator

* Vacuum requirements (e.g. see O. Malyshev EuroTeV) https://avs.scitation.org/doi/10.1116/1.2746876.

* Power deposition on the wall from synchrotron radiation should be ≤1W/m

(see also Duncan Scott, 2008)

https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.490620

* For ILC250 (E_{cm} = 250GeV) the full active undulator length is required to generate enough positrons.

* Although the photon beam is narrow photons hit the wall of the 320m long undulator

Photon opening angle:

$$=\frac{\left[\left(1+K^2\right)\right]^{1/2}}{\gamma}$$

θ

How can the undulator wall be protected from the synchrotron Radiation ?

Power Deposition without and with Photon Masks

Power Deposited in the masks

- In this study, we assume ideal undulator modules and ideal photon masks.
- First masks:
 - Mask 15 receives 80 W.
- Last mask:
 - Mask 23 receives 335 W.

	Average	Power
	energy	Deposited
Mask ID	[MeV]	[W]
15	0.68	80
16	0.85	100
17	0.97	120
18	1.13	140
19	1.31	165
20	1.46	195
21	1.65	235
22	1.77	270
23	2.01	335

Average energy of photons stopped in the masks

- In this study, we assume ideal undulator modules and ideal photon masks.
- First masks (up to mask17):
 - average photon energy in keV range
- Last masks (from mask 18 to mask 23):
 - max and average photon energy in MeV range.

	Average	Max
	energy	energy
Mask ID	[MeV]	[MeV]
15	0.68	3.49
16	0.85	4.39
17	0.97	5.11
18	1.13	6.16
19	1.31	6.98
20	1.46	7.85
21	1.65	8.97
22	1.77	9.81
23	2.01	10.77

Mask design

The dimension and shape of the mask:

- The energy of the incident photons can ٠ reach few MeV.
- The photon mask should stop and protect . the undulator wall.
- The length of the masks is 30cm, due to • the space reserved for the undulator is limited (319.8m),
- TDR suggests the mask aperture is 4.4mm. ٠
- Outer radius is 15 cm.
- The mask aperture is tapered in the first ٠ 5cm (from 0.585cm to 0.44 cm).

Mask Material:

- Masks receive high energies in few MeV.
- Material: High Z-materials, large density • and small radiation length are needed.
- Three material candidates:
 - Copper
 - Iron
 - Tungsten

Beam

To Z direction (to the target)

Parameter	Copper	Iron	Tungsten
atomic number	29	26	74
Density $\left(\frac{g}{cm^2}\right)$	8.96	7.87	19.3
Thermal conductivity (W/m.K)	358	79.5	7.3
heat capacity (J/g/K)	0.385	0.45	0.134
melting point (K)	1357.77	1811	3695
radiation length (cm)	1.436	1.757	0.35

FLUKA Simulation: Copper

FLUKA: used to calculate the energy density and temperature rise.

Deposited Energy spectrum at masks (Copper): Density of Copper = $8.96 \ g/cm^2$

Mask ID	Power Deposited [W]	Average Incident Photon energy [MeV]	Energy Deposited (GeV/ <i>cm</i> ³ /Ph)	PEDD J/(g*pulse)	Maximum Temperature Rise (K/pulse)	Total Power Stopped by mask
15	80	0.68	0.00123	3.12	8.1	98. 1%
16	100	0.85	0.00138	3.63	9.43	98. 1%
17	120	0.97	0.00150	4.02	10.44	98. 1%
18	140	1.13	0.00163	4.47	11.6	98.2 %
19	165	1.31	0.00178	5	12.99	98.3 %
20	195	1.46	0.00186	5.55	14.4	98.4%
21	235	1.65	0.00198	6.29	16.35	98.5 %
22	270	1.77	0.00210	7.15	18.57	98.5 %
23	335	2.01	0.00220	8.18	21.25	98.5 %

The profile of the energy deposited along the mask:

FLUKA Simulation: Iron

FLUKA: used to calculate the energy density and temperature rise.

Deposited Energy spectrum at masks (Iron):

Density of Iron = $7.87 g/cm^2$

		Average			
		Incident		Maximum	Total
		Photon		Temperature	Power
	Power	energy	PEDD	Rise	Stopped
Mask ID	Deposited [W]	[MeV]	J/(g*pulse)	(K/pulse)	by mask
15	80	0.68	3.18	7.15	97.3 %
22	270	1.77	6.78	15.28	97.5%
23	335	2.01	7.79	17.55	97.5%

The profile of the energy deposited along the mask:

FLUKA Simulation: Tungsten

FLUKA: used to calculate the energy density and temperature rise.

Deposited Energy spectrum at masks (Tungsten):

Density of Tungsten= $19.3 g/cm^2$

		Average				
		Incident			Maximum	Total
	Power	Photon	Energy		Temperature	Power
	Deposited	energy	Deposited	PEDD	Rise	Stopped
Aask ID	[W]	[MeV]	(GeV/cm ³ /Ph)	J/(g*pulse)	(K/pulse)	by mask
22	270	1.77	0.0064	10.07	75.14	99.5 %
23	335	2.01	0.007	12.09	90.22	99. 5%

The profile of the energy deposited along the mask:

Power Leaving the Copper, Iron and Tungsten masks

Secondary Particles Distribution around mask

- Secondary Particles Distribution around mask is an important task.
- The secondary particles should not be directed to the undulator wall downstream the mask.
- Mask 23: already downstream the undulator BUT:
 - The worst scenario (highest deposited power) is at mask 23, so it is considered to find a save solution.

Secondary Particles Distribution <u>(Photon,</u> <u>Electron and Positron are important for these</u> <u>particular beam parameters</u>) around copper mask 23:

- Plots show these secondary particles that leave the mask.
- Most of these are photons.
- Where are these particles going to?

Power leaving the copper mask 15& 22 & 23

14

- * Copper: can stop ~ 98.5% of the incident power.
- * Copper: a good material to be chosen for the 21 masks.
- * At mask 22: 0.46 W will be deposited immediately at undulator wall. The radius 0f this power is higher than 5.85mm which is the undulator radius. (The power limit in undulator is 1 W/m).
- * At mask 23: 0.62 W will leave the mask but will be out the undulator (mask 23 is located at the exit of the undulator.

			Maximum	Total
	Power		Temperature	Power
	Deposited	PEDD	Rise	Stopped
Mask ID	[W]	J/(g*pulse)	(K/pulse)	by mask
15	80	3.12	8.1	98.1 %
22	270	7.15	18.57	98.5 %
23	335	8.18	21.25	98.5 %

Power leaving the Iron mask 22&23

- Mask 22: 0.95 W will be directed to undulator wall (1W/m is the limit).
- Mask 23: 1.064 W will leave the mask (mask 23 is located at the exit of the undulator)

			Maximum	Total
	Power		Temperature	Power
	Deposited	PEDD	Rise	Stopped
Mask ID	[W]	J/(g*pulse)	(K/pulse)	by mask
22	270	6.78	15.28	97.5 %
23	335	7.79	17.55	97.5%

Power leaving the Tungsten mask 22&23

16

Tungsten stops ~ 99.5%

Decreases the power that leave the mask into undulator wall direction to 0.0013 W .

			Maximum	Total
	Power		Temperature	Power
	Deposited	PEDD	Rise	Stopped
Mask ID	[W]	J/(g*pulse)	(K/pulse)	by mask
22	270	10.07	75.14	99.5 %
23	335	12.09	90.22	99.5 %

Conclusion

- A possible photon mask geometry with a high photon absorption efficiency has been modelled for three different materials.
- The length of the W mask is 85X₀ and iron and copper only 17X₀ and 20.89X₀, respectively, i.e. a W mask could be substantially shorter.
- Iron mask stops the lowest amount of power (97.5%) compared to the other candidates (Cu and W).
- Copper mask absorbs ~98.5%.
- Tungsten can stop ~ 99.5%.
- To reduce directed power to the undulator wall the last masks (22 and 23) can be made of Tungsten or Copper + Tungsten.
- 2.55 W are leaving the last copper mask (23) in the forward direction and 0.15 W in the backward direction.
- Estimations of power coming from masks to undulator wall is a subject of further studies.
- Energy deposition and temperature increase studies proved that for these particular beam parameters, the masks are safe. For example, the PEDD at copper mask 23 is 8.18 J/(g*pulse), and maximum temperature rise is 21.25 K/pulse.
- The final mask geometry will depend on the non-ideal undulator which is in work.

LHANK JON

				Maximum	Total
	Energy		Material	Temperature	Power
	Deposited	PEDD	Density	Rise	Stopped
Mask 23	$(GeV/cm^3/Ph)$	J/(g*pulse)	(g/cm ³)	(K/pulse)	by mask
Iron	0.00178	7.79	7.87	17.55	97.5 %
Copper	0.00220	8.18	8.96	21.25	98.5 %
Tungsten	0.018	12.09	19.3	232	99.7 %