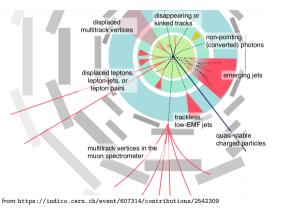


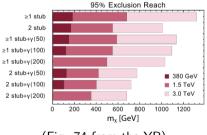
Long-lived particles at CLIC


Ulrike Schnoor (CERN) Erica Brondolin, Cecilia Ferrari, Emilia Leogrande on behalf of the CLICdp collaboration

LCWS 2019

Introduction to long-lived particles (LLP)

- Example: Small mass splitting/compressed spectra
- "Standard" analyses lack sensitivity
- Variety of signatures in detectors depending on the model (mass, lifetime, boost)
- Long-lived particles at LHC:
 - ► LHC LLP overview report: 1903.04497
 - Many ongoing analyses
 - Proposed dedicated experiments (e.g. FASER)
- Physics beyond colliders: 1901.09966



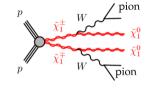
Long-lived particles at CLIC

- 1. Hidden valley searches in Higgs boson decay
 - displaced multi-track vertices
 - full simulation study with CLIC_ILD CLICdp-Note-2018-001
- 2. Degenerate Higgsino Dark Matter
 - Theory-level study for the CLIC Potential for New Physics yellow report [1812.02093] by N. Craig and S. Alipour-Fard
 - Process: chargino pair production
 - Stub tracks from charged Higgsino with a lifetime of 6.9 mm
 - Decay to pion and neutralino
 - Using geometrical detector acceptance and minimum reconstructable length for the efficiency of reconstructing the stub tracks

- Analysis with 1 or 2 stubs and possibly additional photon at 3 TeV
- Resulting exclusion limits assuming no background:

(Fig. 74 from the YR)

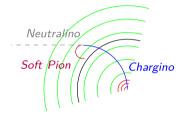
 \blacktriangleright Reach thermal DM mass of pprox 1 TeV


Full simulation of LLP chargino pair production

- ▶ Process: chargino pair production where the χ_1^{\pm} decay to a neutralino and a pion: $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 \pi^+ \tilde{\chi}_1^0 \pi^-$
- CLICdet at 3 TeV, with ISR and Beamspectrum included
- Small mass difference between chargino and neutralino: Chargino mass m_{\tilde{\chi}_1^{\pm}} = 1050 GeV, neutralino mass m_{\tilde{\chi}_1^0} = 1049.645 GeV
- Production chain:
 - Chargino pair production and decay in Whizard
 - Parton shower and hadronization in Pythia
 - Displacement of the decay vertex in Geant4

chargino mixing	thermal limit mass	mass difference	lifetime	c au	Г
pure higgsino	1050 GeV	355 MeV	0.023 ns	6.9 mm	$2.86\times10^{-14}~\text{eV}$

 Sample produced for the studies shown here uses lifetime of 600 mm in order to increase the statistics of reconstructable charginos


Analysis strategy

Stub track analysis at 3 TeV with CLICdet

Signal selection

- Stub track candidate definition:
 - at least four hits in the tracking system
 - disappearing within the tracking system volume
 - no energy deposition in the calorimeter
 - prompt, isolated track
 - minimum transverse momentum
 - dE/dx requirement
- At least one stub candidate per event
- Additional: Requirements on soft displaced pion(s)
- Additional: Requirements on additional photons

Backgrounds:

- ▶ Beam-induced $\gamma\gamma \rightarrow$ hadrons:
 - algorithmic
 - split tracks
 - conversion
- final states with low multiplicity of isolated leptons

 $s(80^{\circ}) = 0.17$ $\eta = 0.18$

_ سے 1.5

1

0.5

 $s(70^{\circ}) = 0$

0.5

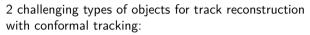
 $s(40^{\circ}) = 0.77$ n = 1.01

> $cos(30^{\circ}) = 0.87$ n = 1.32

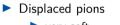
 $cos(20^{\circ}) = 0.94$ n = 1.73

 $cos(10^{\circ}) = 0.98$ n = 2.43

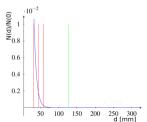
s(50°) =


1.5

CLICdet vertex & tracker


2 z[m]

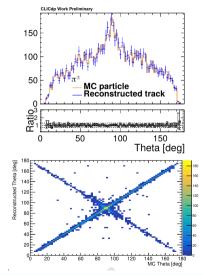
Track reconstruction for the analysis

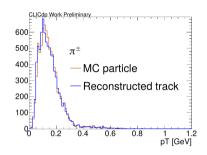


- Stub track reconstruction
 - in many cases too short to be reconstructable
 - ► at CLIC 3 TeV: $E_{max} = 1.5$ TeV, m = 1.05 TeV $\Rightarrow p_{max} \approx 1.07$ TeV
 - $\Rightarrow\,$ chargino gives very straight and short track $\Rightarrow\,$ difficult to reconstruct track parameters

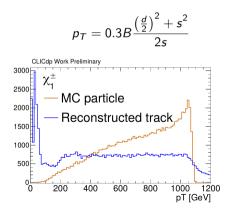
very softdisplaced

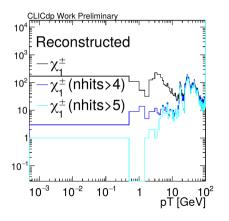
chargino lifetime distribution at $\theta = 90^{\circ}$:



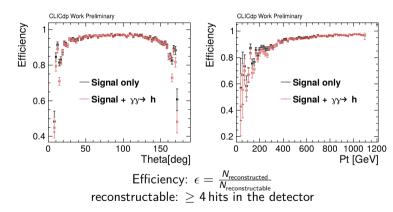

- vertex barrel double layers

Track reconstruction of soft displaced pions


- Reconstruction efficiency is pprox 60 %
- Soft displaced pions are well reconstructed (pT)
- Polar angle:
 - significant contribution of flipped θ due to helix fit of the central soft objects
 - excess in central region

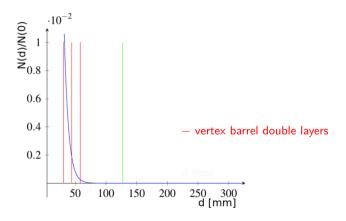

Track reconstruction of stub tracks

 Sensitivity to the curvature of a particle in a given magnetic field depends on the length of the track (d) and the sagitta (s)


 \Rightarrow pT reconstruction of short, straight tracks is limited by the single point resolution

Efficiency for stub tracks

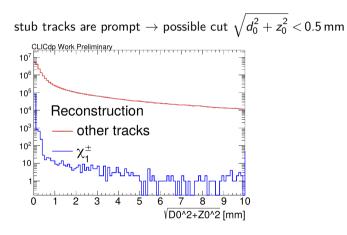
Efficiency decreases slightly at low pT and in the detector very forward regions when the beam-induced background is introduced

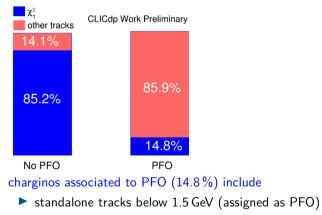


Soft Pion Chargino

Stub track definition

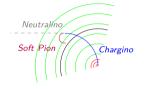
reconstructable: at least 4 hits chargino lifetime distribution at $\theta = 90^{\circ}$:



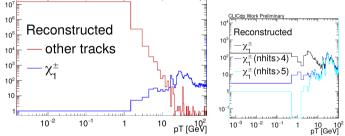

Soft Pion Chargino

- Track
- Prompt
- No PFO association

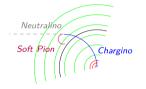
Stub track definition


Stub tracks are not associated to a calorimeter cluster (PFO)

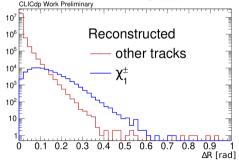
overestimate of the lifetime in the given sample



- Track
- Prompt
- No PFO association
- ▶ p_T requirement

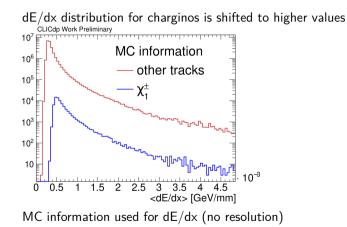

Charginos have higher pT than background tracks \rightarrow preliminary cut at 10 GeV

Note that this removes shorter tracks \rightarrow under investigation

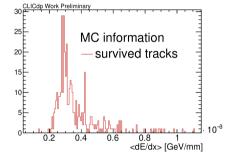


- Track
- Prompt
- No PFO association
- \triangleright p_T requirement
- Isolation requirement

Chargino stub tracks are isolated tracks, their $\Delta R_{\text{nearest track}}$ distribution is peaked at higher values.


Other isolation criteria are under investigation, e.g. $\ensuremath{\mathsf{pT}}$ sum in a cone.

- Track
- Prompt
- No PFO association
- \triangleright p_T requirement
- Isolation requirement
- dE/dx requirement

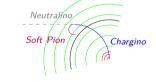


Preliminary background study

- ▶ $\gamma\gamma$ → hadrons-only sample is used to study the main background
- Efficiency of 0.32 % by requiring at least on stub candidate with

$$\sqrt{d_0^2 + z_0^2} < 0.5 \,\mathrm{mm}$$

- $\blacktriangleright p_{\rm T} > 10 \, {
 m GeV}$
- No PFO association
- Additional cut could be on $dE/dx \longrightarrow \longrightarrow \longrightarrow$
 - $\Rightarrow\,$ ongoing study to further understand and suppress the background
 - \blacktriangleright dE/dx resolution
 - additional requirement on pions
 - possibility to add photons



Conclusions and outlook

- Long-lived particles signatures = unexplored avenues for searches for new physics
- Charged long-lived particles at CLIC benefit from clean environment and high precision of the track reconstruction
- Investigated a sample of long-lived chargino pair production
- Track reconstruction of stub tracks quite efficient, p_T reconstruction limited by length of the track
- Preliminary background study shows handle on γγ → hadrons by optimizing stub track definition and dE/dx criterion ⇒ to be continued

Thanks to my collaborators: Cecilia Ferrari, Erica Brondolin, Emilia Leogrande

