Progress in the Accelerator Design

Operation at Z-pole

Status of Positron Source Development

Kaoru Yokoya 2019.10.29 LCWS2019, Sendai

Z-pole Operation of ILC@250

- This report presents study results about the Z-pole (E_{CM} =91.2GeV) operation of ILC@250, assuming the undulator scheme for positron production.
- The possibility of Z-pole operation was first discussed by N. Walker
 - "ILC possibilities at Z and W",
 - http://ilcdoc.linearcollider.org/record/63004?ln=ja
- and by KY at the LCWS2016 at Morioka in Dec.2016.
 - LCWS2016-ZpoleOperation-Yokoya.pptx in <u>https://agenda.linearcollider.org/event/7371/contributions/38173/</u>
- These reports only gave a speculation by a scaling law and some comments on the issues to be studied
- The situation has changed since then
 - ILC energy is now 250GeV rather than 500GeV with shorter linacs
 - The baseline luminosity at 250GeV has been improved from 0.82E34 to 1.35E34 since AWLC at SLAC in Jun.2017, by adopting a reduced (halved) horizontal emittance with a new lattice of the damping ring.

Issues to Be Considered

- Repetition rate
- Damping Ring
 - Dynamic aperture under increased wiggler strength
- Main Linac
 - Alternating operation 125GeV ←→ 45.6GeV
 - Emittance growth due to the low gradient
- BDS
 - Collimation depth
 - Momentum bandwidth
 - Wakefield
- Beam-Beam
- More technical details for DR, ML and BDS will be presented by K.Kubo and T.Okugi in the Beam Dynamics parallel session (Wednesday 8:30).

Parameter Set

- This is the result of the study by K.Kubo, T.Okugi, and KY
- Uploaded in <u>http://arxiv.org/abs/</u>
 1908.08212
- See parallel sessions for more detail

Parameters of Operation	at Z-	pole			
Center-of-Mass Energy	E _{CM}	GeV	91.2	250	
Beam Energy	E _{beam}	GeV	45.6	125	
Bunch collision rate	f _{col}	Hz	3.7	5	
Electron linac rep.rate		Hz	3.7+3.7	5	
Pulse interval in electron main linac		ms	135	200	
Electron energy for e+ prod.		GeV	125	125	
Number of bunches	n _b		1312	1312	
Bunch population	N	10 ¹⁰	2	2	
Bunch separation	Δt_{b}	ns	554	554	
RMS bunch length	σ_{z}	mm	0.41	0.30	
Electron RMS Beam energy spread at IP	σ_{p}/p	%	0.30	0.188	
Positron RMS Beam energy spread at IP	σ_{p}/p	%	0.30	0.150	
Emittance from DR (x)	$\gamma\epsilon^{DR}_{x}$	μm	4	4	
Emittance from DR (y)	$\gamma \epsilon^{DR}_{\ \ \nu}$	nm	20	20	
Emittance at linac exit	γε ^{ML} x	μm	5	5	
Emittance at linac exit	γε ^{ML} ν	nm	35	30	
Emittance at IP (x)	γε* _x	μm	6.2	5	
Emittance at IP (y)	γε* _y	nm	48.5	35	
Electron polarization	P_	%	80	80	
Positron polarization	P ₊	%	30	30	
Beta_x at IP	β^*_{x}	mm	18	13	
Beta_y at IP	β^*_{ν}	mm	0.39	0.41	
Beam size at IP (x)	σ_x^*	μm	1.12	0.515	
Beam size at IP (y)	$\sigma^*_{\ _{V}}$	nm	14.6	7.66	
Disruption Param (x)	Dx		0.41	0.52	
Disruption Param (y)	Dy		31.8	35.0	
Geometric luminosity	Lgeo	10 ³³	0.95	5.29	
Luminosity	L	10 ³³	2.05	13.5	
Luminosity at top 1%		%	99.0	74.0	
Luminosity emhancement factor	H _D		2.2	2.55	
Number of beamstrahlung	n _γ		0.841	1.91	
Beamstrahlung energy loss	$\delta_{ t BS}$	%	0.157	2.62	

Repetition Rate

- Obviously, the electron beam with energy E=91.2/2=45.6 GeV is not sufficient to produce the positron beam
- TDR adopted 5+5Hz operation at E_{CM} =250GeV, assuming the power system for 500GeV
 - 5Hz to produce positron, 5Hz for colliding beam
 - Assumed positron production at E_e=150GeV
 - No power problem
 - The required power for 150GeV (5Hz) + 45.6GeV (5Hz) is lower than that for 250GeV (5Hz)
- However, the power system of ILC@250 is not sufficient for 5+5Hz operation
- Here, we assume 3.7+3.7 Hz operation is possible
 - This value was estimated by T. Matsumoto
 - Klystron output power can be changed at 5Hz but the loaded Q (5.46×10^6) cannot be changed
 - Assume same bunch interval (554ns) for 125 and 45.6GeV
 - Parameters: (obtained by T.Matsumoto, KEK)
 - $31.5 \leftarrow \rightarrow 8.76 = 31.5x (45.6-15)/(125-15)$ MV/m Gradient
 - Peak power per cavity $189 \leftarrow \rightarrow 77.2 \text{ kW}$
 - Klystron peak power 9.82 ←→ 4.15 MW
 - Klystron efficiency 67% ←→ 53%
 - Modulator output 14.66 ← → 7.83 MW
 - Fill time $0.927 \leftarrow \rightarrow 0.328 \text{ ms}$
 - Beam pulse length $0.727 \leftarrow \rightarrow 0.727 \text{ ms}$
 - RF pulse length 1.65 \leftarrow \rightarrow 1.06 ms
 - 3.7 ←→ 3.7 Hz Rep rate

Damping Ring

- Horizontal emittance improved $6\mu m \xrightarrow{\hspace*{-0.5em} \hspace*{-0.5em} \hspace*{$
- Reinforce the wigglers for the shorter time for damping
 - 5Hz: 200ms \rightarrow 3.7+3.7Hz: 270ms/2=135ms
 - Wigglers are ready (TDR)
- Dynamic aperture of the new lattice with stronger wigglers must be confirmed

Damping time vs. wiggler strength factor \rightarrow Factor 1.0 corresponds to 1.29T (ρ^{-1} =0.07745m⁻¹)

Extracted Emittance

- The plots below show the equilibrium and extracted emittances as functions of the wiggler strength
- Wiggler strength factor
 - <1.15 gives large vertical exracted-emittance
 - >1.2 gives large horizontal emittance
- Factor ~1.15 (1.48T) gives the extracted emittance $\gamma\epsilon_x$ ~ 4µm, $\gamma\epsilon_y$ ~ 21nm (extracted at 135ms)

Dynamic Aperture

- The plot shows the dynamic aperture for the wiggler strength factor 1.15 (The sextupole component of the wiggler field is included)
- The hemi-circle around the origin shows the TDR design value

$$\gamma(A_x + A_y) \le 0.07 \text{m}$$

Energy deviation $\le 0.75\%$

The dynamic aperture is sufficient

K.Kubo

Main Linac

Issues

- Orbit difference between 125 and 45.6GeV beams (due to the vertical curvature of the earth) must be corrected by pulsed magnets at the end of electron main linac
- Emittance degradation due to the low gradient for 45.6GeV
- Emittance degradation of 125GeV beam (Orbit correction to be done only for the colliding beam)
 - From the previous studies we believe this is not serious

ML: Beam Dynamics: Positron production beam

- 2 different energy beams in electron main linac
- Orbit is tuned for the colliding beam $(E_{\rm CM}/2)$

• The positron production beam (125GeV) will shift vertically due to earth-following curvature)

250GeV Linac!!

- The orbit difference is $\sim 10 \text{mm}$) for $E_{\text{CM}}/2{=}45.6 \text{ GeV}$,
- Orbit difference itself can be corrected by pulsed magnets (3.7Hz) at ML exit

ML: Vertical Emittance Increase

- Simulation of the orbit correction for 45.6GeV beam
 - Q magnet offset 0.36mm, cavity 0.67mm, tilt 0.3mrad, BPM offset 1μm
 - Vertical only (initial emittance $\gamma \epsilon_{y} = 20 \text{nm}$)
 - $\Delta E = 20\%$ for Dispersion Free Steering
- Two cases of the bunch length $\,\sigma_z=0.3$ and 0.41mm (see BDS) $\Delta\gamma\epsilon_y$ slightly large for $\sigma_z=0.41$ mm
- Final emittance $\gamma \epsilon_v = 33$ nm : acceptable
 - we adopted 35nm in the parameter table

Dynamics in the Undulator Section

- In the present design the colliding beam (45.6GeV) also goes through the undulator (active length 231m)
- The resistive wall wake has been studied long ago. Must be revisited for the very low energy electron, but presumably OK.
- Photons opening angle $(\sim 1/\gamma)$ is large. Large angle photons are mostly eliminated by the masks, but a significant fraction may hit and heat the undulator
- If these turn out to be serious, we need a beamline to bypass the undulator section (~700m, not expensive at all) and additional pulsed magnets
- We need to study these issues in the future

Luminosity with a Simple Scaling

$$\mathcal{L} = f_{\text{rep}} \times n_{\text{bunch}} \times \frac{N^2}{4\pi\sigma_x\sigma_y}$$

- Naive scaling: $\sigma_x \sigma_y$ is proportional to $\mathrm{sqrt}(\varepsilon_x \varepsilon_y) \sim 1/E_{CM} \to L \sim E_{CM}$
- However, the larger beam divergence near IP due to the larger emittance at low energies would cause background.
 - The synchrotron radiation from halo particles from upstream hit the final quadrupole magnets
 - IP beam angle is proportional to $\sqrt{arepsilon_{x(y)}/eta_{x(y)}}$
 - These halo particles must be collimated out in the collimator section
 - $E_{\rm beam}=125{\rm GeV}$ with TDR parameters ($\varepsilon_{\rm x}=10\mu m/\gamma$, $\varepsilon_{\rm y}=35nm/\gamma$, $\beta_{\rm x}$ =13mm, $\beta_{\rm y}$ *=0.41mm) are already at the limit of horizontal collimation depth $\sim\!6\sigma_{\rm x}$ (vertical still has big room: $>\!40\sigma_{\rm y}$). (see next page)

Luminosity with a Simple Scaling (2)

- Now, owing to the new DR design, the horizontal emittance has been improved : $\gamma \epsilon_{x}^{*}=10 \rightarrow 5 \mu m$
- Hence, to keep the collimation depth $\sim 6\sigma_x$, the horizontal beta must be

$$\beta_x^* = 13 \text{mm} \times (45.6/125)/(5 \mu \text{m}/10 \mu \text{m}) \approx 18 \text{mm}$$

Issues in the BDS

- Collimation depth
 - Mentioned in the previous page Adopt $\beta_v^* = 18 mm$
- Momentum band width
- Wakefield effects due to the low energy

BDS: Momentum Band Width (1)

- Momentum band width in FFS is a bottle neck
 - TDR parameters gives the energy spread $\sigma_{\text{E}}/\text{E}{=}0.41\%$ at 45.6GeV (proportional to 1/E, 0.15% for 125GeV)

• The emittance increase the energy spread $\sigma_{\text{E}}/\text{E}{=}0.41\%$ is too large

BDS: Momentum Band Width (2)

- The energy spread can be reduced by adopting a longer bunch in the bunch compressor
 - σ_E/E) proportional to $1/\sigma_z$
 - Let's adopt $(\sigma_z, \ \sigma_E/E) = (0.3 \text{mm}, \ 0.41\%) \rightarrow (0.41 \text{mm}, \ 0.30\%)$
 - The emittance increase due to the band width is still sizable, but let us be satisfied with this.
 - Side effect: increased transverse wake in the main linac and BDS
 - Main linac: already examined. Accelptable
- It may be possible to adopt new final quads with larger apertures dedicated to Z-pole operation (to relax the collimation depth)
 - Required fields are low for 45.6GeV
 - To be studied next time

BDS: Tuning Simulation (1)

- Tuning simulation done with the error parameters in the table
 - For Q-BPM and sext-BPM alignment, here adopted $5\mu m,$ tighter than $10\mu m$ in BDS simulations, expecting several year operation experience
 - For wakefield simulation the dislocation of 0.3mm is assumed for the wake sources (~100 BPMs)

Bend	rotation	100	μrad
	field strength	1×10 ⁻⁴	
	alignment to BPM	100	μm
Quad	alignment (x,y)	100	μm
	rotation	100	μrad
	field strength	1x10 ⁻⁴	
	sext. component B_2/B_1 at $r=1$ cm	1x10 ⁻⁴	
	alignment to BPM	5	μm
Sext.	alignment (x,y)	100	μm
	rotation	100	μrad
	field strength	1x10 ⁻⁴	
	alignment to BPM	5	μm

BDS: Tuning Simulation (2)

 Example of tuning simulation process

BDS: Tuning Simulation (3)

Simulation Results

	$\sigma_{_{X}}^{*}(\mu m)$	$\sigma_{\psi}^{*}(nm)$
No errors	1.04	12.7
Magnet errors + correction	1.12	14.0
Magnet errors + static wake + correction		14.3
Magnet errors + static&dynamic wake + correction		14.6

T. Okugi

The effective emittance increase as

$$\gamma \varepsilon_{x}^{*} = 5 \mu m \rightarrow 6.2 \mu m$$

 $\gamma \varepsilon_{\psi}^{*} = 35 nm \rightarrow 48.5 nm$

These values are used for the beam-beam simulation

Beam-Beam Interaction

- The effets of beamstrahlung is small
 - L at top 1%
 is ~99.0%
- The disruption parameter ~32 is not larger than 250GeV value ~35
- So, we did not check the luminosity sensitivity to offset

Z-Pole Summary

- The previous reports (N.Walker, KY at LCWS2016@Morioka) suggested the expectation L=(1-1.5)x10 33 /cm²/s at Z-pole in 5+5Hz operation of ILC500
- ILC250 (shorter linac) is
 - Worse in total available power → up to 3.7+3.7Hz operation
 - But better in beam dynamics (emittance growth at low gradient)
- The previous luminosity improvement for ILC250 by smaller horizontal emittance (AWLC2017@SLAC) brings about significant effects for Z-pole operation
- Expected luminosity is now L $\sim 2.1 \times 10^{33} \ /\text{cm}^2/\text{s}$
- No particular problem is expected in doubling the luminosity by doubling the number of bunches
- If you want even higher luminosity, the bottle neck is the momentum band width of BDS under the large energy spread of the low energy beam

Positron Status

- Undulator (many slides from Sabine Riemann)
- e-Driven
- Positron Working Group Report written in May last year, available at http://edmsdirect.desy.de/item/D00000001165115
- Since this report there has been no essential progress in the undulator scheme due to lack of resources

Undulator System

- Superconducting helical undulator
 - passed by e- beam → circularly polarized photon beam for e+ production in thin target
- Target
 - Ti6Al4V target wheel spinning with 2000rpm in vacuum to distribute heat load
- Positron capture
 - Pulsed flux concentrator offers higher capture efficiency but so far no reliable design
 - Alternative: QWT
- positron beam is polarized

Goal: positron yield at damping ring Y = 1.5e + /e -

S.Riemann

Superconducting Helical Undulator

- Prototype developed at RAL
 - 2 unduator modules of 1.75m in 4m cryomodule

D.Scott et al... Phys. Rev. Lett. 107, 174803

- Parameters

 - Undulator period, $\lambda_U=11.5mm$ Undulator strength $~K\leq 0.92~(B_{max}~\leq 0.86T)$
 - Beam aperture (diam.) 5.85mm
 - Max 231m active undulator length available (132 undulator modules ⇔ 66 cryomodules)
 - Quadrupoles every 3 modules \rightarrow total length of undulator system is 320m S.Riemann

Target for the Undulator-based e+ Source

- Ti alloy wheel, Ø 1m, spinning in vacuum with 2000rpm (100m/s tang speed)
- ILC250, GigaZ: E(e-) = 125GeV
 - Photon energy is O(7.5 MeV);
 - target thickness of 7mm to optimize power deposition yield
- Target cooling
 - T⁴ radiation from spinning wheel to stationary water cooled cooler
 - Peak temp in wheel ~550°C for ILC250, 1312b/p
 - Peak temp in wheel ~500°C for GigaZ, 1312b/p for wheel designed as full Ti alloy disk

- Test of target material resistivity against high temperature and cyclic load using an intense pulsed e- beam at the Microtron in Mainz (MAMI)
 - No substantial damage obtained although material was loaded below and above the phase transition limit
- Magnetic bearing for spinning wheel
 - Vacuum-tight, oil free, maintenance free even for very high speed
 - Technology and experience exists (e.g. neutron chopper; companies: Juelich, SKF)

S.Riemann

Undulator Positron Source Parameters

		ILC	250	GigaZ	
Electron beam energy (undulator entrance)		126.5			GeV
Active undulator length L _{und}		231			m
		with FC	with	QWT	
Undulator K		0.85	0.9	92	
Photon energy (1st harmonic)		7.7	7.	.2	MeV
Average photon beam power		62.6	72.2	53.5	kW
Distance target-middle undulator		401			m
Photon beam spot size on target (σ)		1.2	1.45		mm
Average power deposited in target	1312 bunches	1.94	2.2	1.63	kW
Average power deposited in target	2625 bunches	3.88	4.4	3.23	kW
Peak energy deposition density in	1312 bunches	61.2	59.8	59.8	J/g
target	2625 bunches	92.6	90.4	90.4	J/g
Positron polarization		~30			%

S.Riemann

Undulator: Positron yield

- Electron energy 125GeV (126.5GeV to compensate loss in undulator)
- Photon energy is O(7.5 MeV)
- Expected yield from this figure is $\sim 1e+/e-$ for E(e-) = 125 GeV
- The simulation described in the positron WG report gave ~1.3e+/e-
- More recent simulation gives a smaller value

Need to optimize/improve the e+ capture

150

Drive beam energy (GeV)

200

50

100

Simulation results of positron source yield and polarization for 231 m RDR

300

250

QWT

 Flux concentrator (TDR) does not seem feasible due to the long pulse

 To be replaced by QWT (Quarter Wave Transformer)

• M. Fukuda, LCWS18

• Y < 1e + /e

B field is decisive for positron yield

- Steeper field rise close to target needed for yield > 1e+/e-
- Immersed target could help but eddy current increase heat load for non-pulsed operation
- Optimization is under study

Target – QWT: 11.5mm QWT – ACC: 50mm

Target

8000

2000

OWT

Standing wave tube

Magnetic field data from file QWT DC.AM

2019/10/29 LCWS19 Sendai, Yokoya

Undulator: Photon dump

- Narrow 60-120kW photon beam deposits only few percent in target
- Problem: high energy density of photon beam even at distance of O(km) from target
- Options under study
 - Water dump
 - Tumbling Ti window, He cooled → acceptable stress and heat load
 - Free falling water curtain to absorb the photon beam and to scatter particles at safe distance to Ti window

graphite dump

- Shallow angle (~10mrad) to beam
- No need for exit window

But: high peak load and graphite degradation

2019/10/29 LCWS19 Sendai, Yokoya S.Riemann

Y. Morikawa

Undulator Summary

- No showstopper seen for undulator-based source
- Detailed engineering specifications for target wheel and experimental tests still to be done
 - Test cooling efficiencies by thermal radiation for a target piece
 - Develop full-size mock-up for the target to test the target rotation in vacuum
 - Photon dump design
- resources….(only for information)
 - DESY e+ source group decreased:
 - Andriy and Felix left, Sabine retired; no successors
 - Khaled (PhD student) studies realistic undulator (see his talk)

S.Riemann

e-Driven System

- Intensive design/simulation studies on-going
- New powers
 - H. Ego, Y. Enomoto: KEKB linac experts
 - A. Miyamoto: physics, radiation environment

e-Driven System Latest Parameters

- Based on a paper being prepared for a journal
- There are various simulation results giving slightly different yields
- The data here is the one being used for a consistent parameter set
- The yield $n(e^+)/n(e^-) \sim 1.2-1.3$ confirmed
- This defines the required bunch charge in the electron driver, and all the power deposition (next page) in the entire system

Electron	Driver				
	Beam energy		3	GeV	
	Linac type		NC S-band TW		
	Bunch charge		3.7	nC	
	Beam power		74	kW	
	Beam size on the target (rms)		2	mm	
Target					
	Material		W		
	Thickness		16	mm	
	Diameter		0.5	m	
	Required rotation speed at the rim		5	m/s	
Adiabati	c Matching Device (Flux Concentrato	r)			
	Peak field (at 5mm from the entra	nce)	5	Т	
	Distance from the target end to FC	Centrance	1.0	mm	
Capture	Linac				
	Linac type		NC L-band	WS b	
	Aperture radius		30	mm	
	Solenoid field		0.5	Т	
	Positron energy at the exit		260	MeV	
Positron	Booster				
	Linac type L-band TW and S		S-band TW		
	Positron energy at the exit		5	GeV	
Energy C	Compressor				
	Type		L-band TV	V	
Positron	Positron Yield				
	N(e+ captured in damping ring)/N	(e- in the driver)	1.28		

e-Driven: Heat and Power Parameters

Electron	Driver		
	Beam power of electron	74	kW
Target			
	Average energy deposit on the target by the beam	18.8	kW
	PEDD in the target	33.6	J/g
Flux Con	centrator		
	Average energy deposit on the FC by the beam	6.4	kW
	PEDD on FC	9	J/g
	Average energy deposit in the absorber afer FC	10.3	kW
Capture	cavity (L-band standing wave)		
	Average energy deposit in the capture cavities	39.9	kW
	Maximum energy deposit in a cavity cell	2.0	kW

e-Driven: Yield Simulation

- Simulation works by Nagoshi (Hiroshima) was succeeded by Fukuda (KEK)
- Detailed consistency checks done
 - In good agreement between Nagoshi and Fukuda to a few percent level
- Added more reality and details
 - Solenoid field: divided into pieces, interval, gap,
 - FC field calculated by Pavel
 - Target-FC distance
 - QWT field (undulator)
 - Tracking by SAD to DR
 - Chicane after capture section (not finalized yet)
 - ECS chicane parameters
 - Booster acceleration gradient
 -
- Cannot go into detail → Fukuda's talks in the positron session on Thursday

An example: Target-FC Distance

- Yield increases $1.06 \rightarrow 1.26$ (15%) as 5mm \rightarrow 1mm
- No essential difference between 1mm and 2mm
- But there is a significant difference in the eddy current heating due to the rapid (10's of $\mu s)$ change of the field of FC

D(mm)	yield
1	1.26
2	1.25
3	1.20
4	1.13
5	1.06

e-Driven: Target

Design

- Tungsten 16mm thick, diameter 50cm, rotating at 5m/s (225 rpm)
- Copper disk brazed to tungsten (or might be bolted)
- Water-cooled
- Vacuum seal by ferro-fluid

R&D

- Heat & stress simulation
- Prototype fabricated
- Vacuum test with ferro-fluid seal and rotation (but no load)
- Irradiation (Co60) test of ferrofluid at QST Takasaki
- These have been reported in previous LC workshops already

• 2019

- Irradiation test continued
- Analysis of gas generated at the irradiation to study the surface physics (Feb.2019)
- Need a test against neutron irradiation

- Design of the next prototype being discussed
 - Should the ferro-fluid seal be replaceable?
 - I do not know the final conclusion
 - Listen to the talk by Omori in the positron session

Capture Cavities

- L-band Standing Wave same as in TDR (undulator scheme) has been used in the simulation works
 - Designed and studied at SLAC for the undulator system

Figure3: 11-cell SW structure.

- But, for e-driven system, several problems associated with the standing wave nature(zero group velocity) pointed out
 - Multiple cell, high β,
 - High beam-loading for e-driven
 - Up to 0.5-1A (~6mA in undulator scheme)
- New design being considered including APS (Alternating Periodic Structure) but it will take time

Radiation Environment (1)

- Target/capture region
- Accurate modeling

Primary dose (not depend on run year)

Giving the basic data in designing the shield sytem around the target

Radiation Environment (2)

- Detailed simulation of the Radiation near the rotating target
- Radiation on the ferro-fluid seal
 - Check neutron flux

1 year beam: Energy deposit Total dose, tarA (2625Bx, 5Hz)

- Miyamoto
- 10MGy/year
- Need more shield for < 1MGy/year

Radiation Environment (3)

- All along the beamline from the chicane to DR
- Turned out the loss at ECS very large (comparable to the target)

Section	Beam loss [kW]	Ave. Energy [MeV]	Num. of e+
Chicane	0.92	187	1553
4Q1L	3.74	299	3944
4Q2L	1.37	556	779
4Q4L	1.27	1555	257
4Q4S	5.62	2741	647
ECS	21.72	4700	1459

Remaining Issues of e-Driven System

- Target
 - Prototype test for more realistic model
 - Endurance against neutron
- Flux concentrator
 - Cooling
- Capture cavity (standing wave)
 - New design (multiple cell, high β)
 - Transient beam loading
 - Cooling system
- Beamline
 - Chicane (after capture)
- Replacement system of target-capture area
- Radiation shield
 - Target-capture region
 - Entire beamline
- Layout
 - Possible transition from e-driven to undulator

Positron Summary

- Intense studies of e-driven scheme on-going
 - Overall design
 - Yield calculation
 - Target
 - Radiation calculation for the design of the shielding of the entire positron system
- Still more detail necessary for the above topics, plus
 - Shield and tunnel design
 - Capture cavity design and loading calculations
 - Target exchange system
 - Entire layout
- Need resources for the undulator scheme