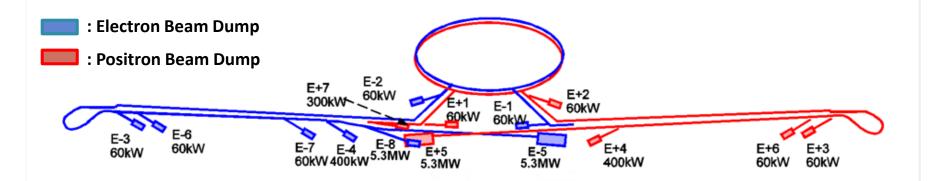
Radiation Shield around ILC Beam Dumps

KEK Yu Morikawa

2019/10/30

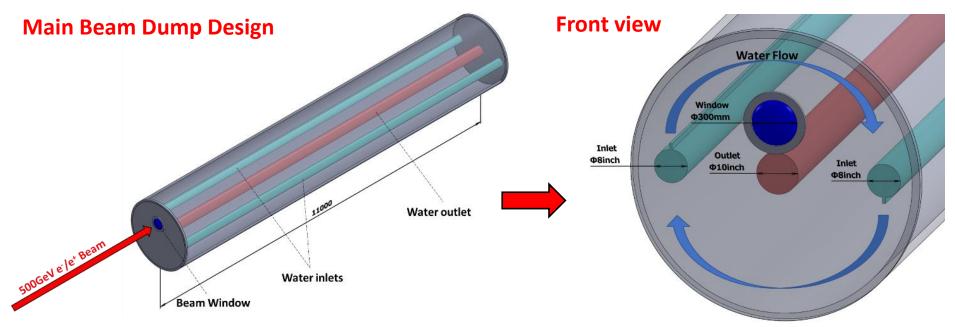
Goal of this talk


- Estimate the required thickness of radiation shield. (especially transverse direction) The amount of radioactive isotope generated in shield materials was evaluated by Monte Carlo simulation (FLUKA).
- ✓ We take special care to estimate the thickness of the shield so that <u>there is no activation effect outside the tunnel.</u>

Contents of this talks

- 1. Brief Introduction of ILC beam dumps
- 2. Simulation of radioactive isotope production in shield materials

Brief Introduction of ILC Beam Dumps


ILC Beam Dumps

Туре	Power	Purpose	Absorber	Place
Α	60kW	Tune-up & Emergency	Solid material	9[E-1,E-2,E-3,E-6,E-7,E+1,E+2,E+3,E+6]
В	400kW	Tune-up & Emergency	Solid material	2[E-4,E+4]
С	300kW	Photon Dump	Water ? Graphite?	1[E+7]
D	8MW	5 + 5 Hz Operation	Liquid-water	1[E-8]
E	17MW	Main Beam-Dump	Liquid-water	2[E-5,E+5]

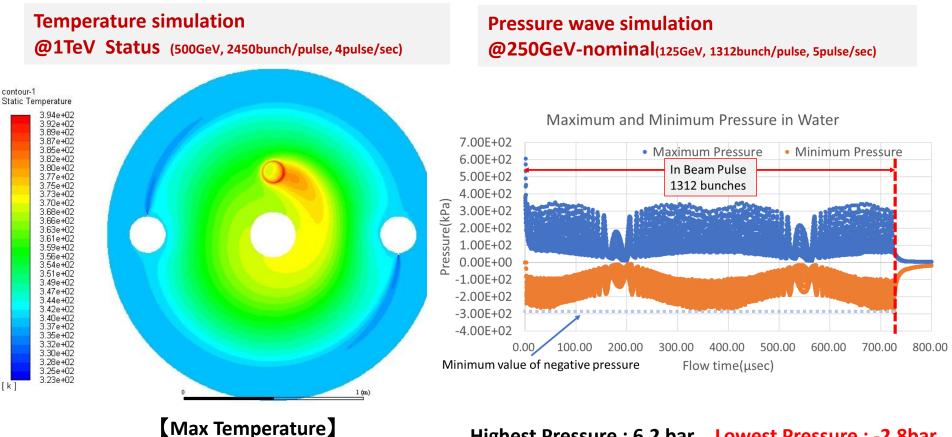
Total 15 Beam dumps in ILC . Beam dumps are classified into 5 types.

Main Beam Dump (Water , type D&E)

[Beam Power @ 1TeV Beam operation]

•500GeV × 2.79nC × 2450Bunches × 4pulses/sec : **13.7MW** + **20% safety margin** = **17MW**

[Base Design*]


• Water power absorber and forced convection to extract the heat.

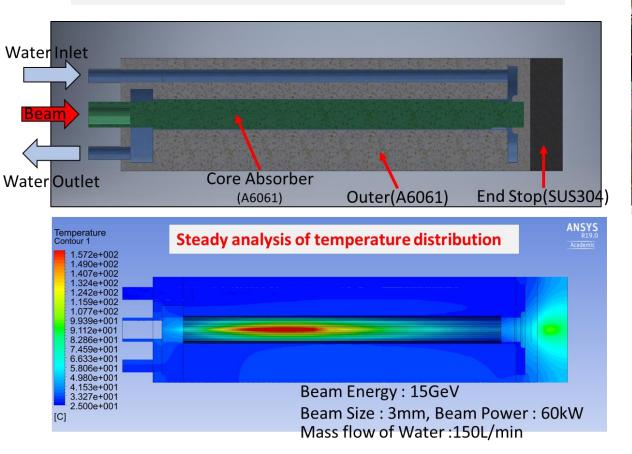
- * Water is compressed **1 MPa** \Rightarrow **boiling temp 180°C**
- * Vortex water flow ⇒ Mass flow rate : 104.5kg/s each inlet, flow velocity 2.17m/s
- •1mm thick Beam Window made of Ti-6Al-4V.

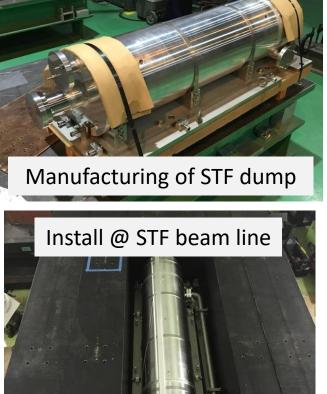
* Base design of ILC Main Beam Dump : P. Satyamurthy, et.al., NIM A 679 (2012)

Main Beam Dump (Water, type D&E)

Many simulations have been performed on this beam dump performance.*

Highest Pressure : 6.2 bar , Lowest Pressure : -2.8bar

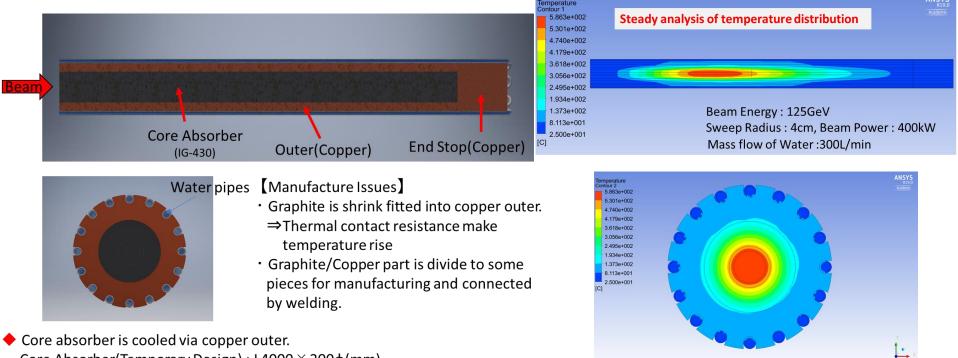

250GeV-nominal : 68°C , 1TeV : 121°C


* Design check of ILC Main Beam Dump : Y. Morikawa, LCWS2018

60kW Beam Dump (Aluminum , type A)

[Base Design of Type A] Made of Aluminum Alloy*1

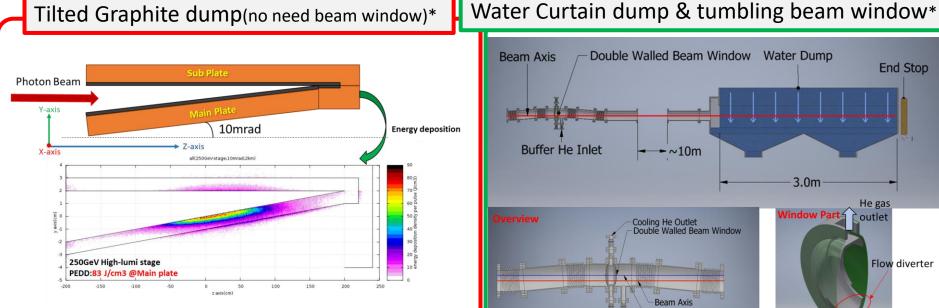
Performance Test @ STF*2



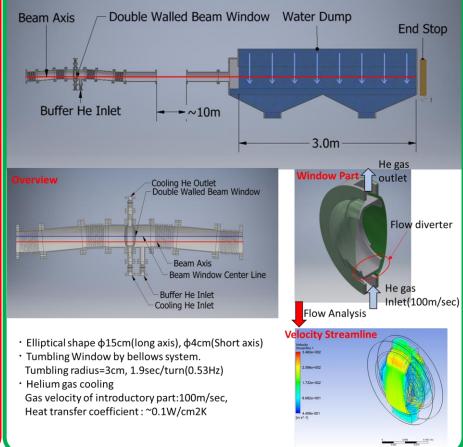
- Prototype of this beam dump was already made and has being tested at STF.
- * 1 Design of other beam dumps :Y. Morikawa, LCWS2018,
- * 2 Development of STF Beam Dump : Y. Morikawa et al ., Particle Accelerator Society of Japan 16(2019)

400kW Beam Dump (Graphite , type B)

[Base Design of Type B] Made of Graphite*1



Core absorber is cooled via copper outer.
 Core Absorber(Temporary Design) : L4000 × 200φ(mm).
 * Radiation Length(Graphite) : 23.9cm , Morier radius(Graphite) : 5.9cm


• Base design was created with reference to E-XFEL beam dump.

* 1 Design of other beam dumps :Y. Morikawa, LCWS2018,

Photon Beam Dump (Graphite or Water, type C)

- Increasing the effective beam size by making beam incident on tilted graphite.
- Max temp for 250GeV-High lumi stage 614°C(887K) @ Main plate **143°C(416K)** @ Sub plate

- •We have 2 design candidates. Water Curtain and Graphite design.
- Basic thermal analysis was already done. Next issue will be how we can make the robust system with industrial technology. * Photon Dump Design and R&D plan :Y. Morikawa, POSIPOL2018,

Simulation of radioactive isotope production in shield materials

FLUKA Simulation Settings

Beam Dump Structure & Beam intensity

Туре	Beam Dump Structure	Beam Energy(GeV)	Beam Power(kW)	Operation Scenario
А	Aluminum :φ450 × 1500(mm)	5,15	60	500hour/year × 20year
В	Graphite :φ 500 × 4000(mm)	500	400	500hour/year × 20year
С	Graphite : t100 × 2000(mm)	Undulator Photon	120	5000hour/year×20year
D,E	Water : φ1800 × L11000(mm)	500	17,000	5000hour/year × 20year

• Beam dump structure is simplified.

• Type B & D & E, beam energy is set to 500GeV for future energy upgrade. (initial is 125GeV)

Radiation Shield

• Iron Shield thickness is set to 50cm. Behind Iron Shield, Concrete shield is set.

 \Rightarrow Estimate the required concrete thickness

for the radioactivity density in concrete to be below the clearance level(Next slide).

•Co & Eu are highly effective in viewpoint of residual nuclide. I added more then usual.

Concrete composition(density 0.22g/cm3)*

Usual(wt%):Co~0.002,Eu~0.0002

Element	Н	0	Na	Mg	Al	Si	K	Са	Fe	Со	Eu
Wt%	0.19	46.3	1.66	0.50	8.95	25.6	1.06	9.18	6.12	0.01	0.001

* from HAZAMA ANDO corporation technical report 2015.vol3

Clearance Level

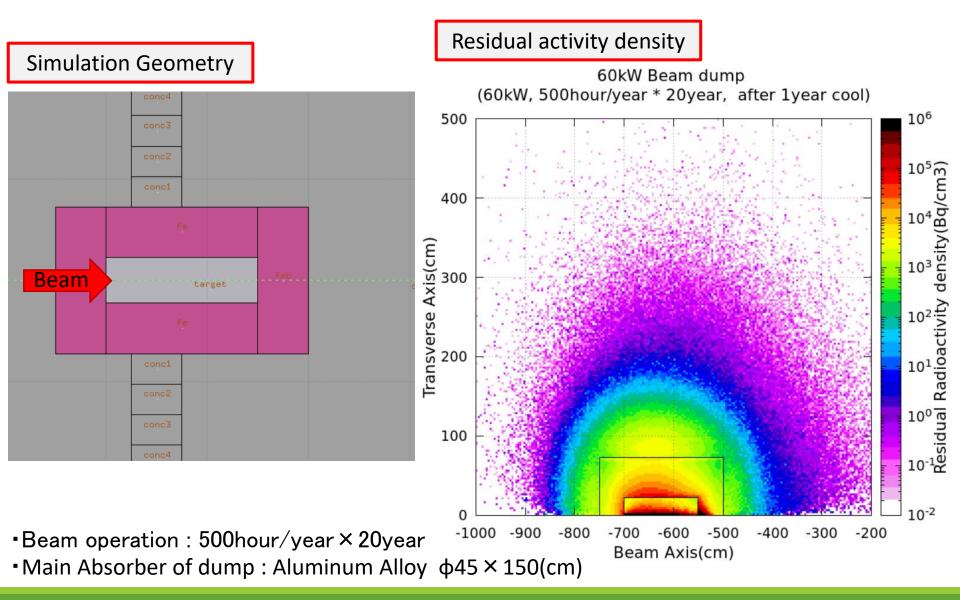
Clearance Level*

The standard of radioactivity

<u>concentration</u> that is determined so as not to affect the human body regardless of how it is used or disposed of.

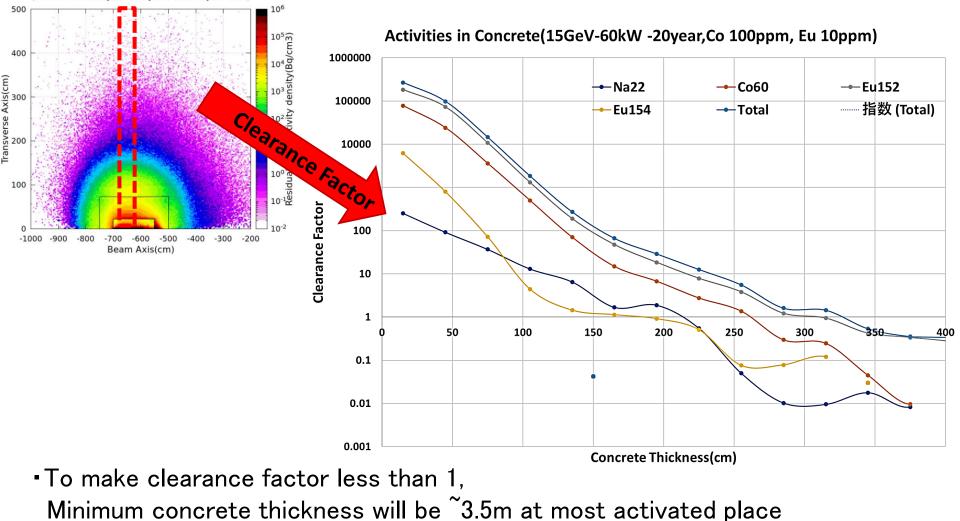
The clearance level \Rightarrow radioactive concentration at which the amount of radiation received per year is 0.01 mSv. This dose is less than 1 / 100th of the dose we receive from natural radiation, and it is recognized internationally that even if multiple effects overlap, we can ignore the effects on human health .

Clearance evaluation

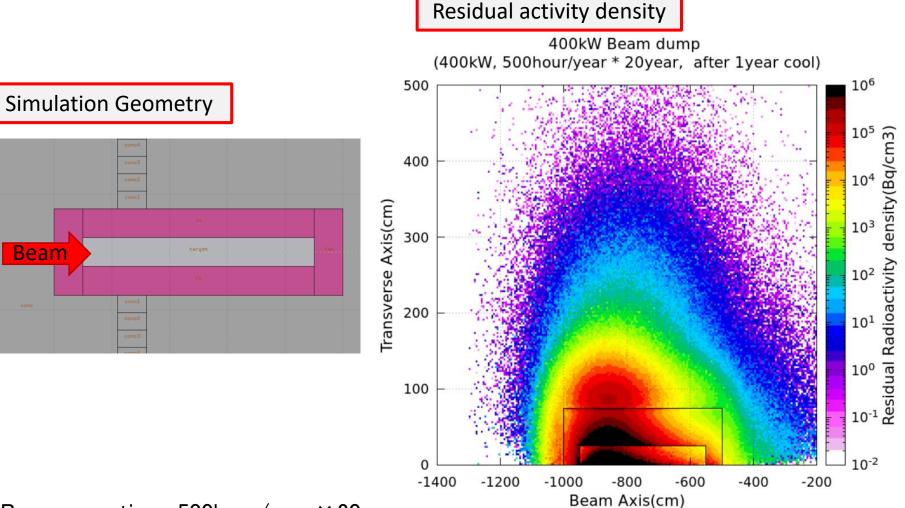

- Summation of each radioactivity / each nuclei's clearance level.
- This summation should be less than 1.

Clearance Level for each radioactivity

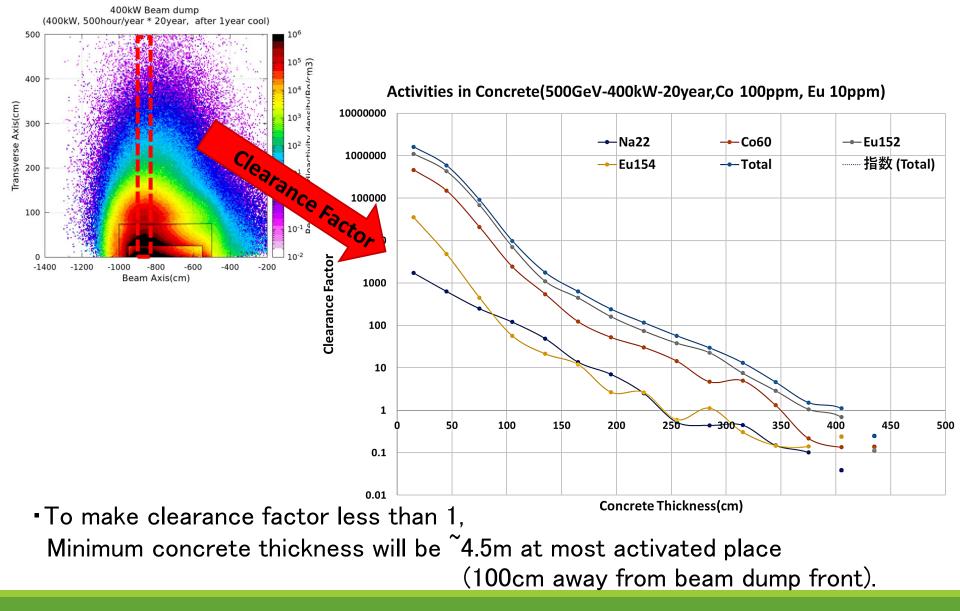
	³ H	100
放射線発生装置から発生	⁷ B e	1 0
	¹⁴ C	1
した放射線により生じた放	^{2 2} N a	0.1
射線を放出する同位元素に	³⁶ C 1	1
よつて汚染された物であつ	^{4 1} C a	100
て金属くず又はコンクリー	⁴⁵ C a	100
	⁴⁶ Sc	0.1
卜破片	⁴⁴ T i	0.1
	⁵⁴ M n	0.1
	⁵⁵ F e	1000
	⁵⁹ F e	1
	⁵⁶ C o	0.1
	⁵⁷ C o	1
	⁵⁸ C o	1
	⁶⁰ C o	0.1
	⁵⁹ N i	100
	⁶³ N i	100
	⁶⁵ Z n	0.1
	^{9 3 m} N b	1 0
	⁹⁴ N b	0.1
	^{108m} Ag	0.1
	^{110m} Ag	0.1
	¹¹³ S n	1
	¹²⁴ S b	1
	¹²⁵ S b	0. 1
	^{123m} T e	1
	¹³⁴ C s	0.1
	^{1 3 7} C s	0.1
	^{1 3 3} B a	0.1
	¹³⁹ C e	1
	¹⁵² Eu	0.1
	¹⁵⁴ E u	0.1
	¹⁶⁰ T b	1
	¹⁸² T a	0.1
	¹⁹⁵ Au	10
	²⁰³ Hg	1 0


should be less than 1. Unit : Bq/g *[JAPAN Clearance system] https://www.fepc.or.jp/nuclear/haishisochi/clearance/index.html

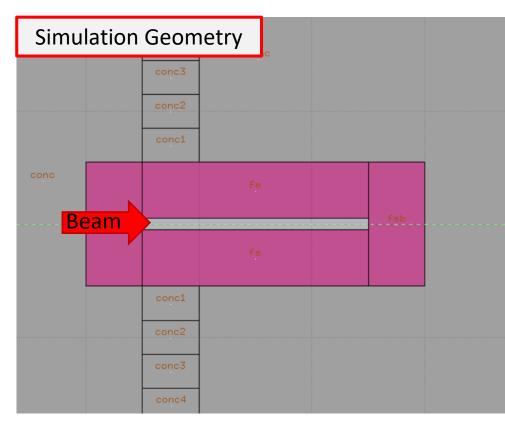
60kW Beam dump (Aluminum , type A)


60kW Beam dump (Aluminum , type A)

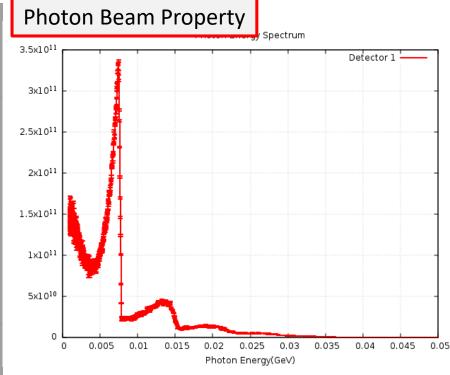
60kW Beam dump (60kW, 500hour/year * 20year, after 1year cool)


(20cm away from beam dump front).

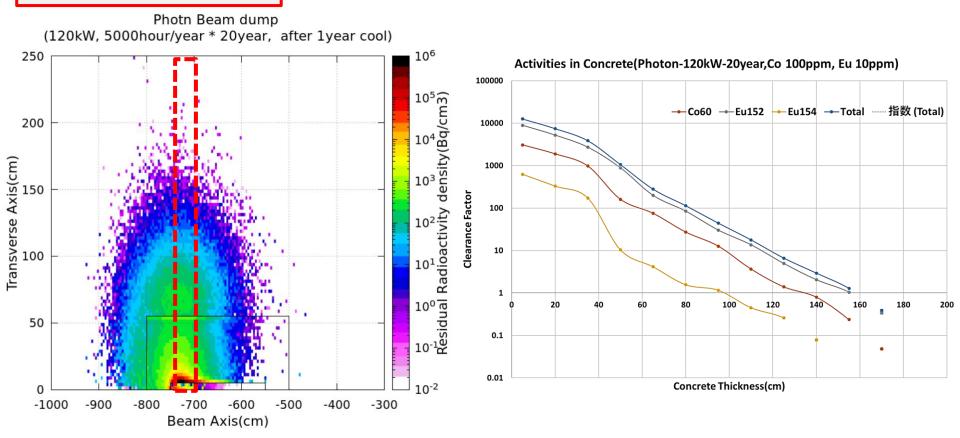
400kW Beam dump (Graphite , type B)



- Beam operation : 500hour/year × 20year
- Main Absorber of dump : Graphite ϕ 50 × 400(cm)


400kW Beam dump (Graphite , type B)

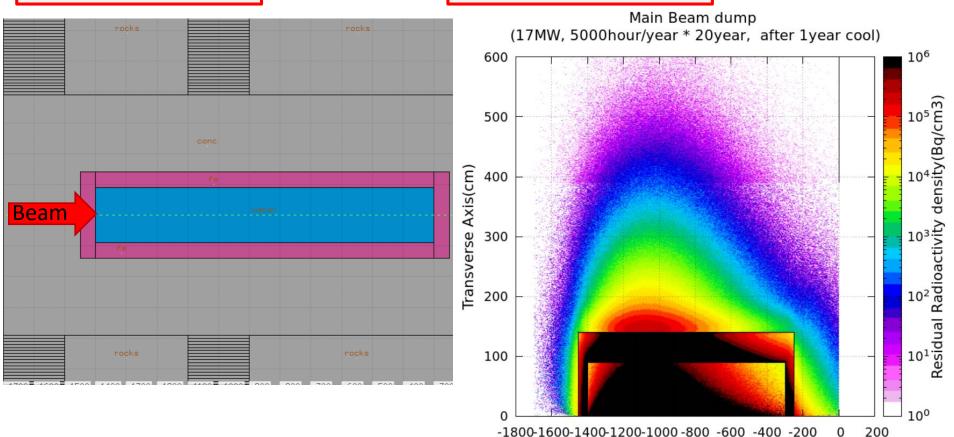
Photon Beam dump (Graphite , type C)


Beam operation : 5000hour/year × 20year
Main Absorber of dump : Graphite t10 × 200(cm)

Photon Beam	250GeV stage
Num of photons/bunch	8E12
Num of bunches/pulse	2625
Pulse repetition	5Hz
Peak Photon Energy	7MeV, 14MeV
Beam power	120kW

Photon Beam dump (Graphite , type C)

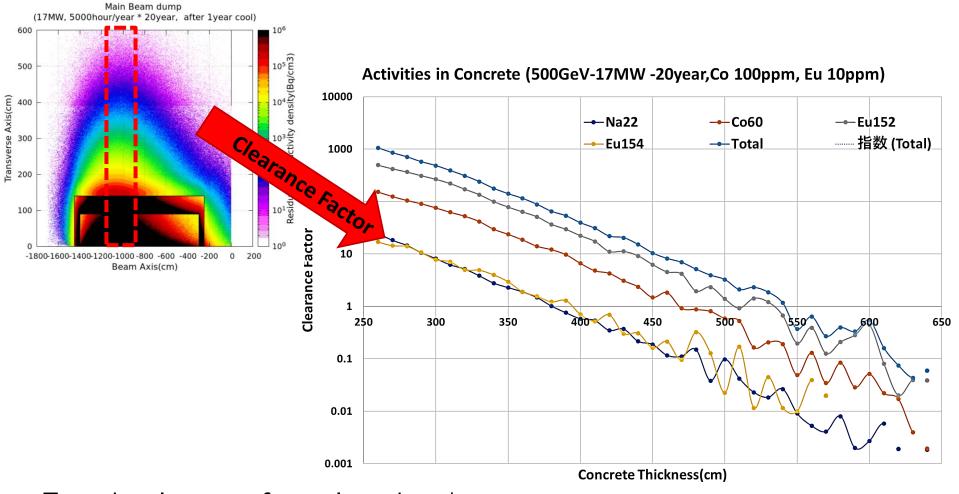
Residual activity density



 To make clearance factor less than 1, Minimum concrete thickness will be ~2.0m at most activated place (10cm away from beam dump front).

Main Beam Dump (Water , type D&E)

Simulation Geometry


Residual activity density

- •Beam operation : 5000hour/year × 20year
- Main Absorber of dump : Water ϕ 180 × 1100(cm)

Beam Axis(cm)

Main Beam Dump (Water, type D&E)

 To make clearance factor less than 1, Minimum concrete thickness will be ~5.5m at most activated place (4m away from beam dump front).

Summary

Summary & Next Step

Estimate the required thickness of radiation shield so that there is no activation effect outside the tunnel.

Co60, Eu152 are main components of activities in the shield material. These are produced by thermal neutron.

Туре	Beam Energy(GeV)	Beam Power(kW)	Operation Scenario	Concrete Thickness @ the most severely activated areas
А	15	60	500hour/year × 20year	~3.5m
В	500	400	500hour/year × 20year	~4.5m
С	Undulator Photon	120	5000hour/year × 20year	~ 2.0m
D,E	500	17,000	5000hour/year × 20year	~5.5m

Next Step

Back side shield of Main dump. Muon penetration! (Next talk , Sakaki-san)

> Tunnel design to set these shield.

To reduce the thermal neutrons effectively,

Consider using boron and gadolinium(some special components?).