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Introduction

extra shield

cover of core
for muons

e+/e- 125GeV inside water

2x1014/s

cover of core

® Recent study related to muons produced behind ILC main beam dump
® ? x10'4/s electrons with 125 GeV dive into main beam dumps
® Part of the energy is used for the production of radio-nuclides

- Inside water: The biggest issue. How to deal with T00TBq Tritium and heat safely
(well known and studied)

- Cover of core: Thickness of concrete. Scattered fast neutrons and thermalized one
produce large number of nuclides (see Yu's and Nobuhiro's talks)

- Behind beam dump: Topic in this talk. Almost 100% phenomenon is due to muon



ELEMENTARY
PARTICLES

Muon is a copy of electron, feel electromagnetic and
weak force but not strong force

200 times heavier than electron (m, = 106MeV) m

Three Generations of Matter

Only the mass difference induces followings:
- Charged pion mostly decays into muon, not electron
- Photon mostly decays into electron pair, not muon pair

It seems that muon radiation make problems at only
'hadron” accelerators in which a ton of pions are
produced

However, we cannot ignore muon radiation at [LC since
most of the beams are not stored in rings and discarded
In dumps — A lot of chances to produce muons




Muon production at electron accelerators

e+/e- 125GeV
~2x1014 /s
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® Muons are mainly produced by pair production via bremsstrahlung in target

® extremely forward direction: @ ~ mu/k

® smaller cross section: o(uu) ~ 0(ee)/40000 ~ 0.1 Z2 ub
- 1OM10-1T1) muons/s (ILC, Emax~100GeV)
- 10M6-7) muons/s (J-PARC. MLF)
- 10%(10-11) muons/s (J-PARC. Neutrino Experimental Facility, Emax~20GeV)

Flux [1/cm?/source]



Range of muon
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Muon mainly lose energy by ionization loss
p(Al) = 2.7 g/cm3
p(concrete) ~ 2.3 g/cm3
p(rock) ~ 2.7 g/cm3

® Need long shield to stop muons due to its strong penetrating power

- Muons don't feel strong force and bremsstrahlung cross section is

suppressed by the heavy muon mass



The region where muons penetrate

From Terunuma's talk (ALCW?2018)

Summary: Main Beam Dump and Around

Time for the CFS engineering design is limited.
Fix beamlines, location and size of systems!
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CFS consideration on the main dump and around, Nobuhiro Terunuma (KEK), 29 May 2018, ALCW2018, Fukuoka.




Muon shielding

Effective dose [uSv/h]

® [Two concerning things:
(1) Radiation exposure by muons

(2) Radionuclide production and its effect to environment

(Muon dose along beam axis. Area of surface is 1m?2)

20 100 150 200
(beam direction) z [m]

E I I I I | I I I I | I I I I | I I I I | IE
10° ;L assuming here isin Rock =5 ® High dose for a long interval
- (0=2.7g/cm3) :
10° &= -4 ® Need good predictions of the intensity and
- : spread of muons for an adequate design of
10° g 7 muon shielding
109 L : : 4 ® Need Monte Carlo code that correctl lculat
= [Behind main beam dump = y calculate
- 1 muon pair production, muon transportation
10° & E
10’ _—I Lo o e e e b e | ]
0

beginning of
beam dump



Monte Carlo simulation

® \We use PHITS and FLUKA (in this talk mainly PHITS)

® PHITS is a general-purpose Monte Carlo particle transport
simulation code mainly developed in JAEA. KEK is also contributing
to the development of EM shower (EGS5) and implementing models
of high energy physics

® Recent developments on PHITS allow it to use for the shield design
of high energy accelerator

e User friendly. Especially visualization is very easy.



Muon fluence induced by electron beam

® Comparison to data regarding muon shielding at SLAC using 18GeV electron
W.R Nelson, et.al.. Nucl. Instr. and Meth. 120 (1974). 413-429
® Muon angular distributions at 4 Gaps
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Muon fluence induced by electron beam

Muon Fluence [1/cm2/Coulomb]

® PHITS and MARS seem to give good predictions of muon flux
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Nuclide production

® 4 processes of radionuclide:

(1) negative muon capture (u- + p —=n + v,) rock

(2) EM interaction between muon and nuclear/nucleon

(3) Secondary neutron interactions (spallation, capture) /
(4) Secondary photon interactions (photo-nuclear) here
most activated region
by muon
Activity(Bq/9g)

Nuclide Half-life(y) y-/p+ process

(After 20 years run)
3H

® Fvaluation of the number of nuclides depends on rock composition

® We are planning to take more detailed data on the composition of on-site rock




A case of muon shield

® Possible to decrease activation level even down to "Clearance Level (CL)" with
20m iron shield for muon

r
<—20m>

iron shield

e+/e-
125GeV
2x1014 /s

® Clearance Level (CL) is a level at which health damage from produced
nuclides can be ignored.

- Exposure from a material satisfying CL is less than 0.01mSv/y, which is 100

times smaller than the natural averaged dose (2.4mSv/y). Nuclide CL (Ba/q)

Production of ¢ | 3H
CL of ¢ < 22Na

® Satisfying CL « (Cl-ratio sum) = »_

for all 2

54Mn
60Co
152Eu




A case of muon shield
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® "Cl-ratio sum" becomes less than 1 except for the iron shield

® |f we reduce radioactivity down to this level, radiation problems behind the beam dump at
a decommissioning stage will be easier.



Summary
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® A radiation issue related to muons at ILC main beam dump
® ~10'0 muons/s appear behind the beam dump during the operation

® Two things to consider:

(1) Radiation exposure by muon

- Strong penetrating power. Forward direction. High dose-rate for a long interval

(2) Radionuclide production and its effect to environment

- Possible to reduce activation level even down to the clearance level by iron shield

® |n future work, we will estimate environment effects and fix the structure of
behind beam dump with a safety criteria.
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Muon energy distribution behind main beam dump
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