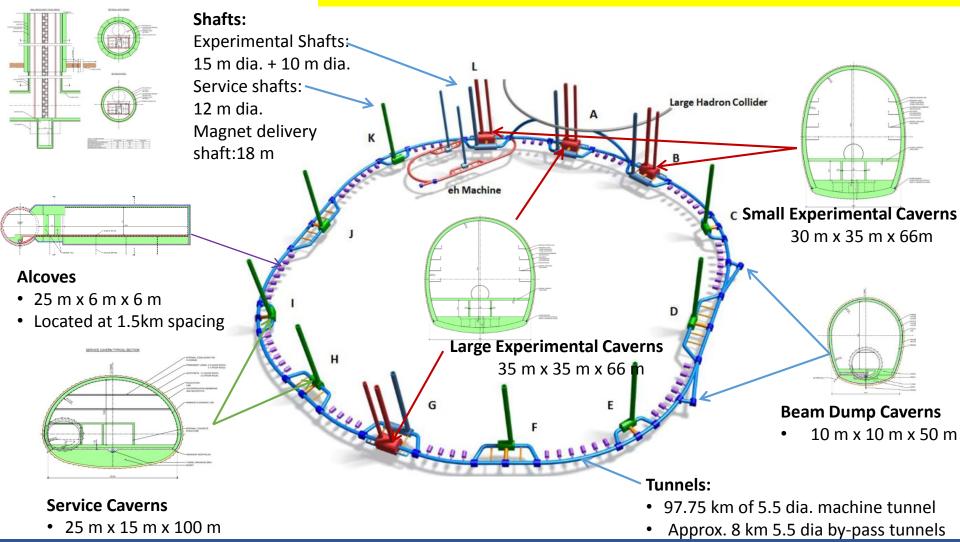


Infrastructure News for CERN's FCC and CLIC studies

John Osborne CERN

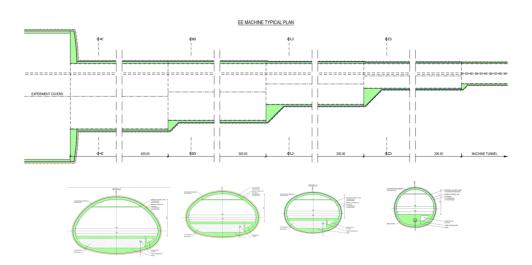
31 October 2019 – Sendai, Japan

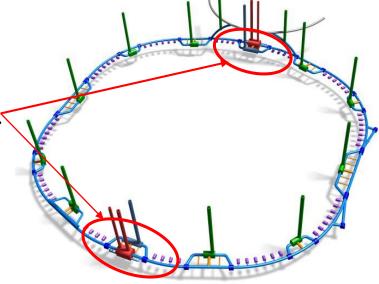

FCC CE study progress

Cost and schedule estimate compatible with the CDR baseline for all 3 machines: FCC-hh, FCC-ee and FCC-eh Refinement of results (fire compartments, caverns spacing) Additional ILF studies (cash flow, spoil volume per site, HL-LHC cost comparison)	HE-LHC Requirements gathered from cryogenics, electrics and HVAC, which determined the modifications needed for HE- LHC for civil engineering Cost estimate produced	Spoil ManagementStudy of the molasses re-use (approx. 9 million cubic meters of spoil)Samples tested from HL-LHC sitesImage: Complex test of the test of	Optimisation of tunnel alignmentTunnel layout optimisation based on geology, shafts depth, construction risks and surface sitesPotential surface areas identified following first review with host states	 Ongoing work: Surface site investigation Site investigation planning Spoil management study Transfer line design
CONSULTING ENGINEERS May 2018	Aug. 2018	WWW.UNILEOBEN.AC.AT	c. 2018 Jan Ju	ne 2019 Ongoing
CERN		CDR volumes European Strat	submitted to egy for Particle Update	

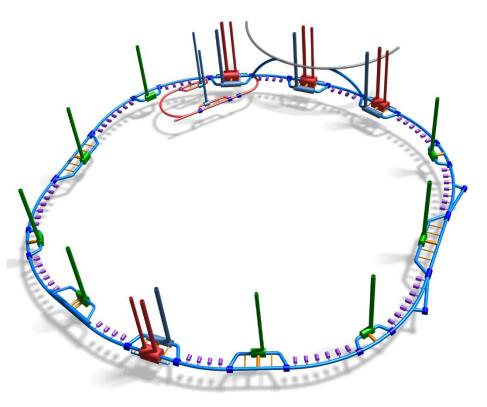
FCC civil engineering overview

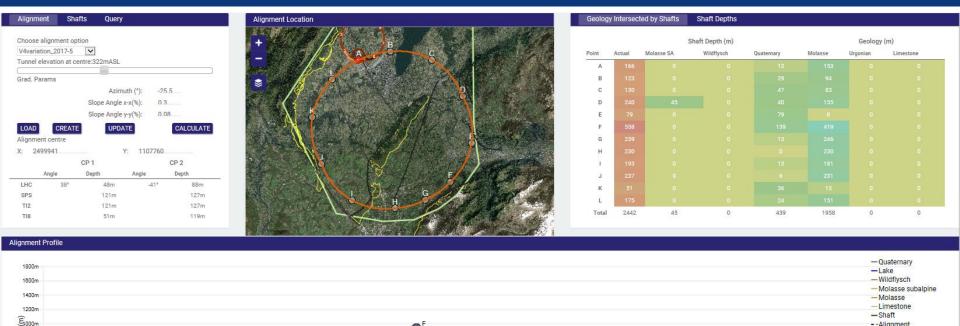
Underground civil infrastructure for FCC - 3D schematic (not to scale)





- Would be constructed at the same time as FCC-hh
- Infrastructure must be able to accommodate both machines.
- Enlargements required at experiment points A and G.




	\frown		
	_ -	e	

Structure	Quantities	Description	Applicable Section from the Baseline Design
Machine Tunnels	9,091m	5.5mID tunnel	Machine Tunnels
Service Shafts	2No	9mID shaft	9m shaft with same support of the 10mD Experiment Shafts
Service Caverns	2No	25m span, 50m long cavern	Service Cavern
Injection Cavern	1No	25m span, 50m long cavern	Service Cavern
Dump Cavern	1No	16.8m span, 90m long cavern	Junction Cavern
Junction Cavern with the FCC before Point L	1No	25m span, 50m long cavern	Service Cavern
Junction Cavern with the FCC after Point L	1No	25m span, 50m long cavern	Service Cavern
Junction Caverns between Machine Tunnels and FR Galleries	3No	16.8m span, 20m long (x2), 100m long (x1) caverns	Junction Cavern
FR Galleries	2No	5.5m span, 1070m long tunnel	Bypass Tunnel
Waveguide Connections	50No	1mD, 10m long	Klystron Connections
Connection Tunnel	4No	3m span	Connection Tunnels

<u>aru</u>p FCC CDR baseline footprint

^{40km} Distance along ring clockwise from CERN (km)

70km

60km

80km

- · Alignment

90km

97.75km tunnel circumference

Geology Intersected by Section

10km

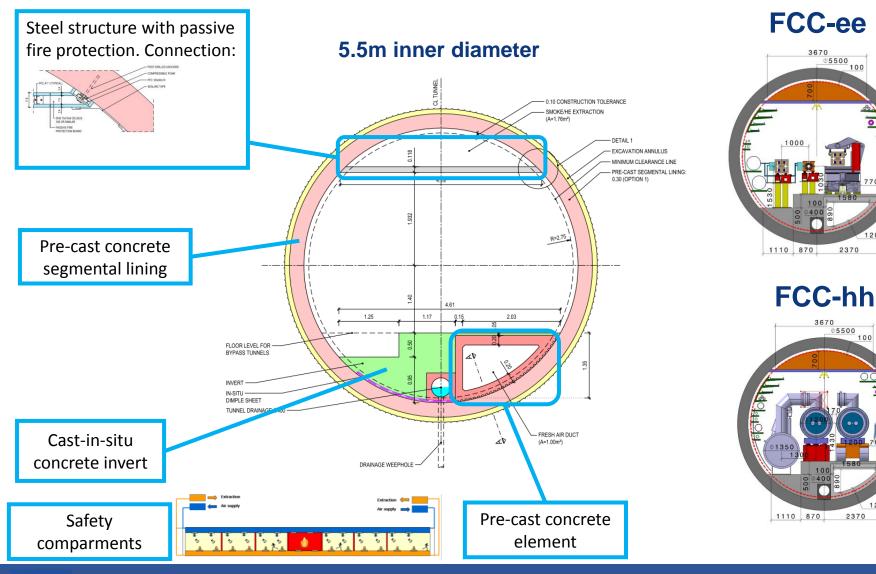
20km

~90 % molasse – suitable ground for tunneling. Only one sector in limestone.

3720 m sum of shaft depths

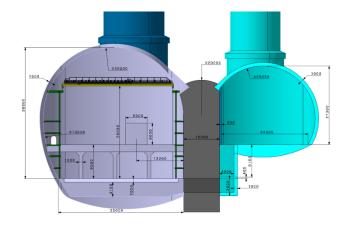
558 m deepest shaft (F): proposed to be replaced with an inclined tunnel

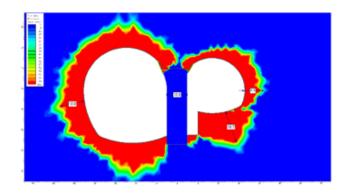
30km


NASL 800m 600m 400m 200m Om

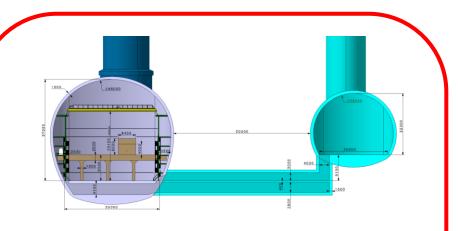
Okn

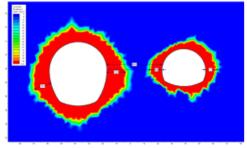
Geology Intersected by Tunnel


Typical tunnel cross section

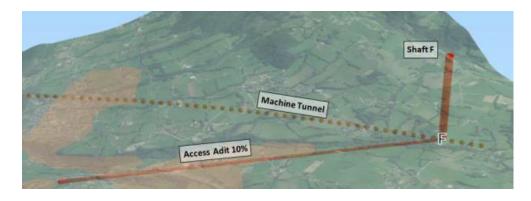


CERN



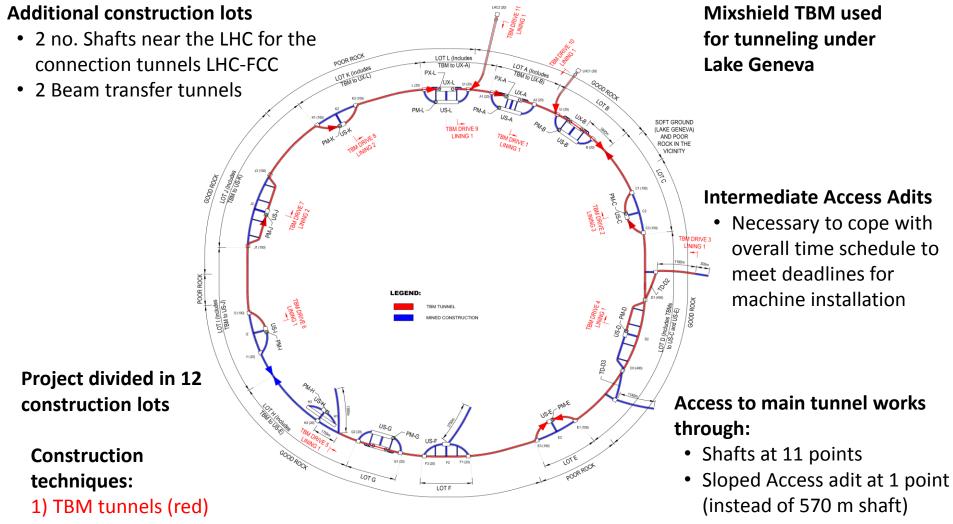

Experimental points cavern layouts

• With a 10 m spacing it is feasible but a high strength concrete pillar is required.


- With 45 m spacing in good molasse, the rock pillar alone is sufficient.
- Cheapest and lowest risk option for CE

Inclined access tunnel at point F

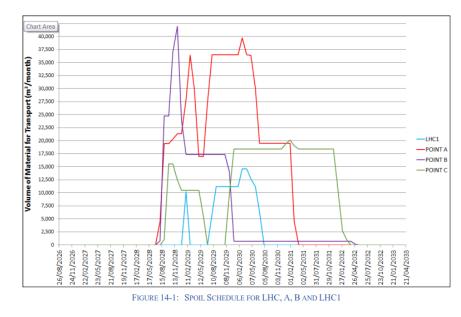
Option	558 m Shaft	10% inclined access	15% inclined access			
Excavation length	558 m (12 mID)	3820 m (9.0mID)	2750 m (9.0mID)			
Total duration (months)	22.2	25.8	23.2			
Relative CE Cost	1	1.08	0.78			
Advantages	Shorted length of services	 Improved surface site location and access TBM ready in cavern for tunnel excavation 	 Improved surface site location and access TBM ready in cavern for tunnel excavation 			
Disadvantages	 Baseline lift mechanism not feasible Surface site has difficult access 	Increased length of services	 Increased length of services Transport method at 15% to be confirmed 			


Existing LEP transfer tunnel TI18 15% from SPS to LHC

Whole project cost and schedule implications, including transport and services, still to be evaluated.

Construction Strategy

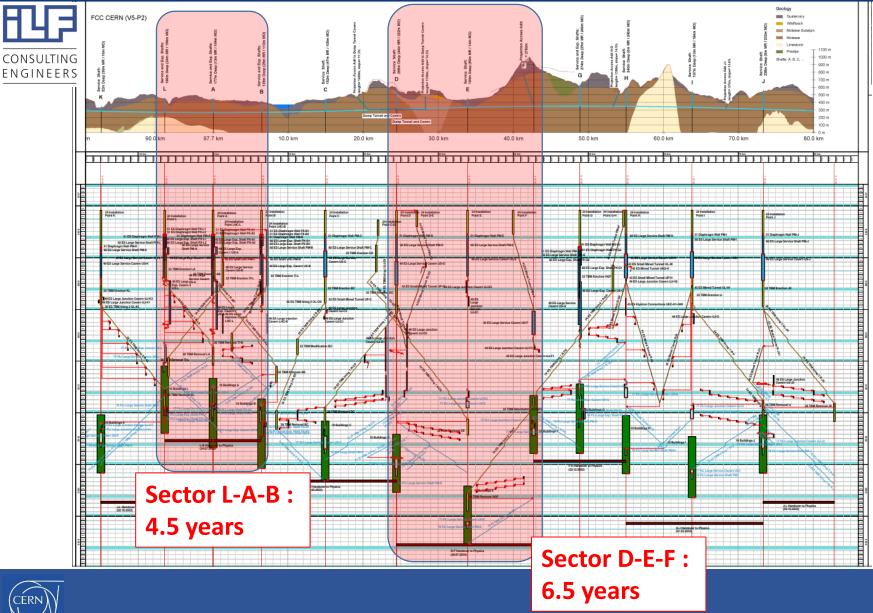
2) Mined tunnels (blue)

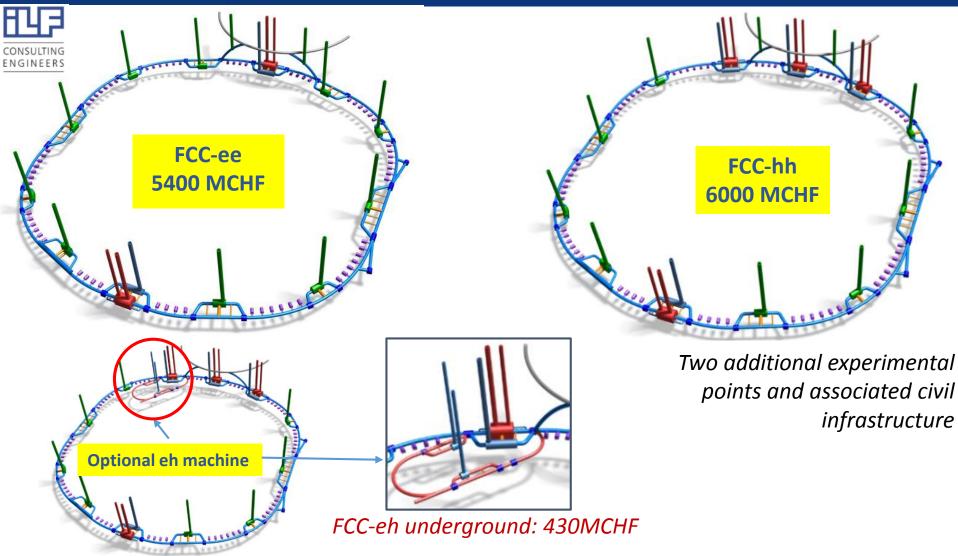


Spoil Management

Extraction Site	Volume (m ³)						
	Soft Ground	Limestone	Molasses	Total			
Construction Shaft at LHC1	11,031	0	133,735	144,765			
Construction Shaft at LHC2	0	0	202,589	202,589			
Shafts at Point A	26,469	0	791,948	818,417			
Shafts at Point B	35,161	0	326,482	361,643			
Shaft at Point C	181,807	0	385,920	567,727			
First Construction Tunnel at Point D	0	0	709,452	709,452			
Shaft at Point D	15,992	8,806	668,961	693,760			
Second Construction Tunnel at Point D	0	0	235,355	235,355			
Shaft at Point E	6,528	0	174,792	181,320			
Tunnel at Point F	0	1,206	375,414	376,621			
Shaft at Point G	33,086		471,215	504,301			
Construction Tunnel at Point H	0	244,081	750,620	994,701			
Shaft at Point H	0	7,329	421,401	428,730			
Shaft at Point I	6,528	0	796,634	803,161			
Shaft at Point J	6,528	0	805,629	812,157			
Shaft at Point K	13,381	0	610,972	624,353			
Shafts at Point L	29,990	0	671,700	701,690			
Total Spoil Volume	366,500	261,422	8,532,821	9,160,743			

Assumed bulking factor of 1.3

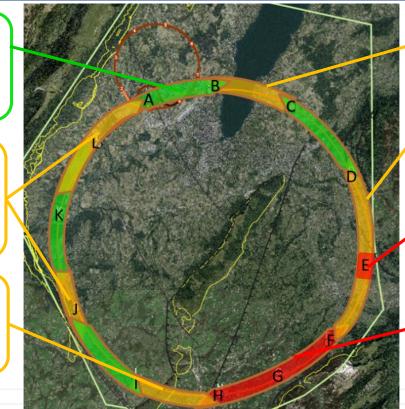

Production of up to 42,000m³ per month 9million cubic meters to dispose Can the molasse be re-used?

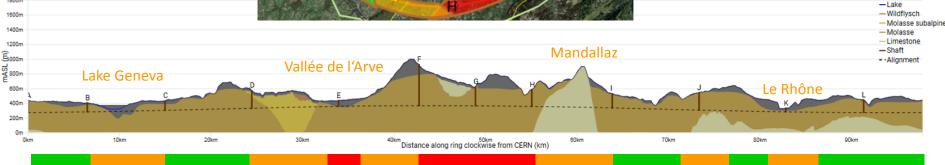


CÉRN

Construction Schedule

FEE FCC Cost estimates for civil engineering


*The expected accuracy range is between -30% and +50% for feasibility stage


Geological uncertainty

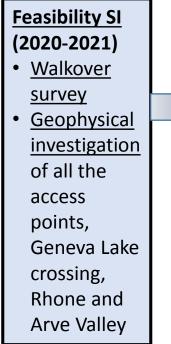
- Information near to CERN is strong due to previous experience on LEP/LHC.
- Multiple deep boreholes in the area.
- Alignment close to limestone rockhead.
- The exact location and angle of the limestone/molasse interface undefined.
- Limestone formation known, but characteristics and locations of karsts unknown.

- Location of the interface between molasse and molasse subalpine not certain, tunnel alignment in proximity.
- Seismic and borehole information for lake crossing from proposed road tunnel, but layered nature of lake bed leads to uncertainty.
- Moraine/molasse interface not certain, cavern close to interface.
- Lack of deep boreholes in area.
- No deep borehole information available in the area.
- Complex faulted region.
- Molasse/limestone interface uncertain.

Ouaternary

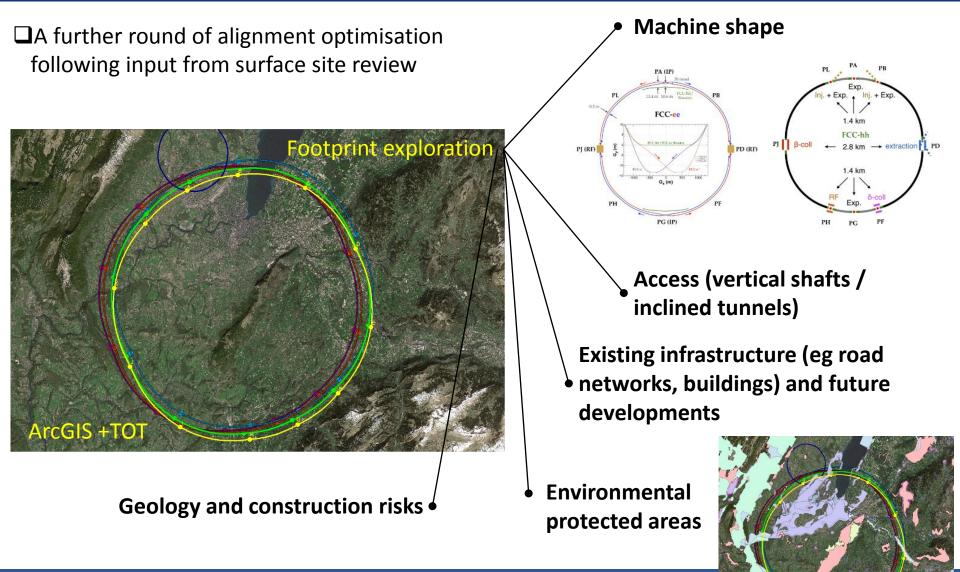
1800/

Future Circular Collider Study FCC Week 2019, Brussels Alexandra Tudora


Schedule for preparatory phase

CDR		Europe	an Strat	egy Upo	date 2020	D				
	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
LHC operation	LS2		LHC run	3	LS	53		LHC ru	ın4	
CERN feasibility	Alignm	<mark>ent optir</mark>	nisation							
Site investigations		Feasik	oility SI	Phase 1	Phase 2	Phase	9			
Consultant Contracts			act and strategy	Survey	and	Preliminary Design	Tender	Design		uction sign
Construction								1arket urvey	Tender a	nd Award
EIA and permitting documents			El a	and perm	itting docu	umentation				S C

Site investigations



	Principal SI (2022-2023) Phase 1 – site investigations required for the development		<u>Additional SI</u> (2024-2025)	
	of preliminary design			
	Phase 2 – confirmation of geological profiles and		Phase 3 –	
٦/	engineering design parameters		additional	
•		,	explorations	
	Types of site investigations:		needed in	
	• <u>Boreholes</u>		order to	
	 <u>Site testing</u> (eg insitu stress test, point load testing, SPT, 		obtain a	
	CPT, permeability tests)		reliable cost	
	• Rock laboratory testing (eg uniaxial compressive strength,		estimate	
	petrographic studies)			

Ongoing work and future steps

□ Continuous desktop study of geology (collaboration with geological survey public institution and engineering consultants)

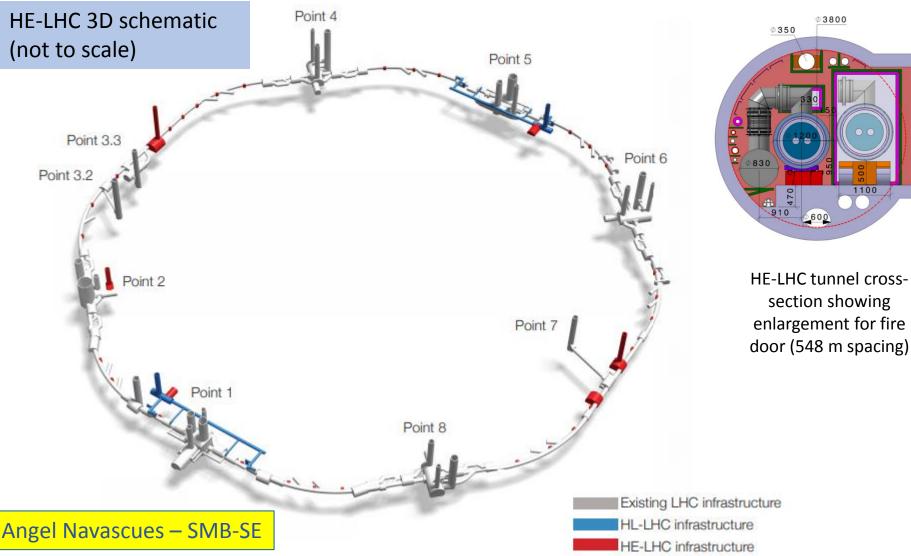
 Exploring GIS tools and alignment optimisation software - Workshop with industries at CERN held in October 2019 on tunnel alignment tools and tunnel monitoring :

https://indico.cern.ch/event/823271/

Long term tunnel monitoring for maintenance should be built into designs for ILC at concept stage

□ Site investigations planning

□ Spoil management study


Transfer line design

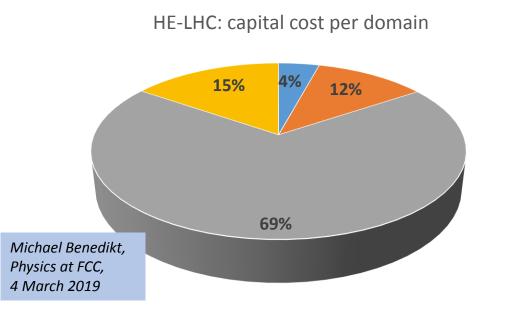
Other Studies

HE-LHC civil engineering developments

Future Circular Collider Study FCC Week 2019, Brussels Alexandra Tudora

HL-LHC infrastructure HE-LHC infrastructure Ø3800

1100


Ø350

910

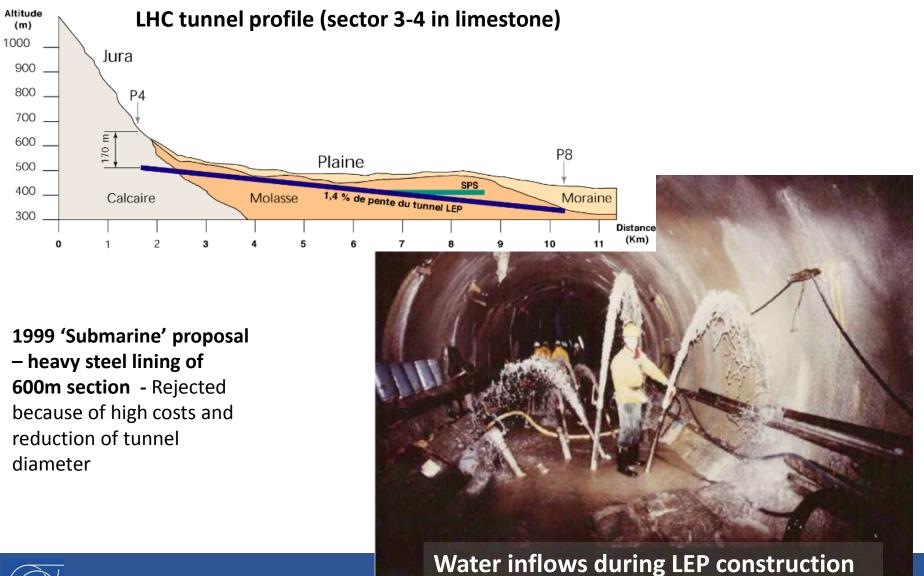
0600

section showing

HE-LHC civil engineering developments

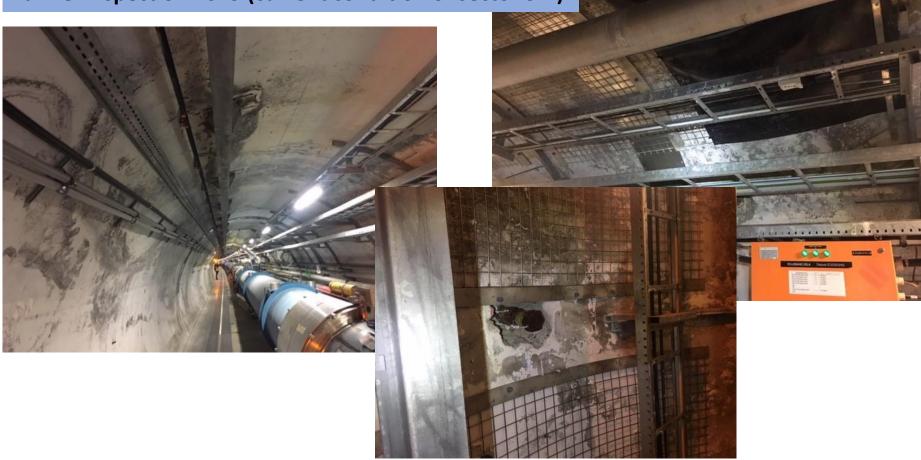
Preliminary cost estimate produced for civil engineering: ~300 MCHF

- Civil Engineering 300 MCHF, 4%
- Technical Infrastructure 800 MCHF,11%
- Machine 5000 MCHF, 69%
- Injector & transfer lines 1100 MCHF, 15%


For HE-LHC modifications to existing LHC infrastructure are required to house a new accelerator:

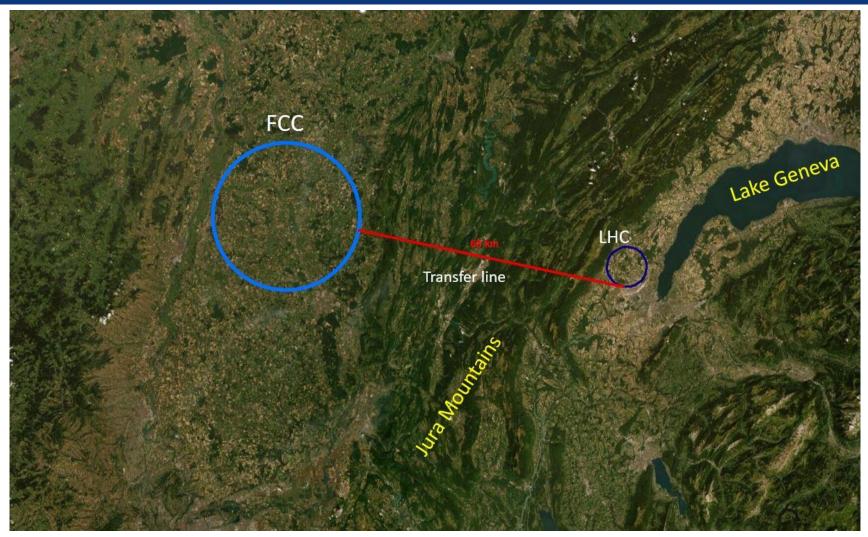
- New cryogenic caverns and electrical alcoves
- New access shafts
- New buildings for cryogenics, electrical and ventilation equipment
- Installation of fire separation walls including extension of the tunnel envelope every 548 m
- Partial refurbishment of LHC Sector 3-4

Sector 3-4 refurbishment



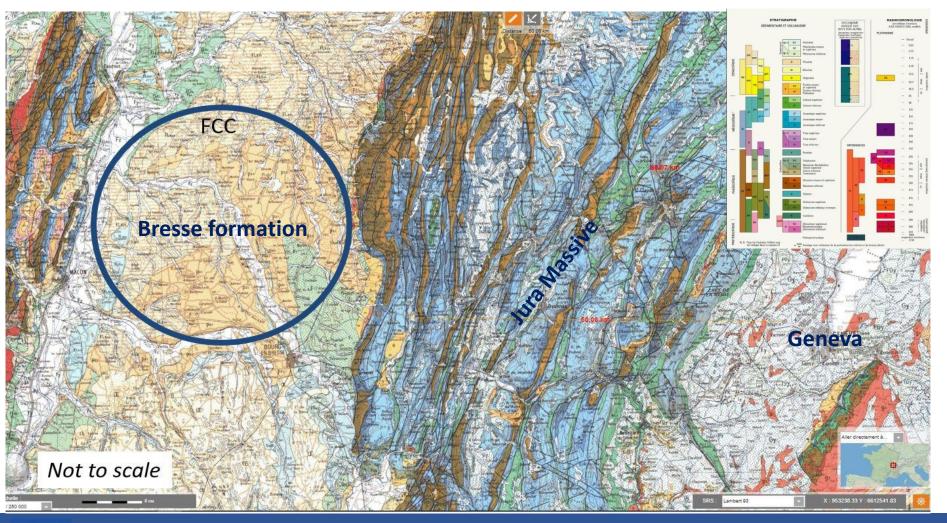
Sector 3-4 refurbishment

Tunnel inspection 2019 (current condition of sector 3-4)



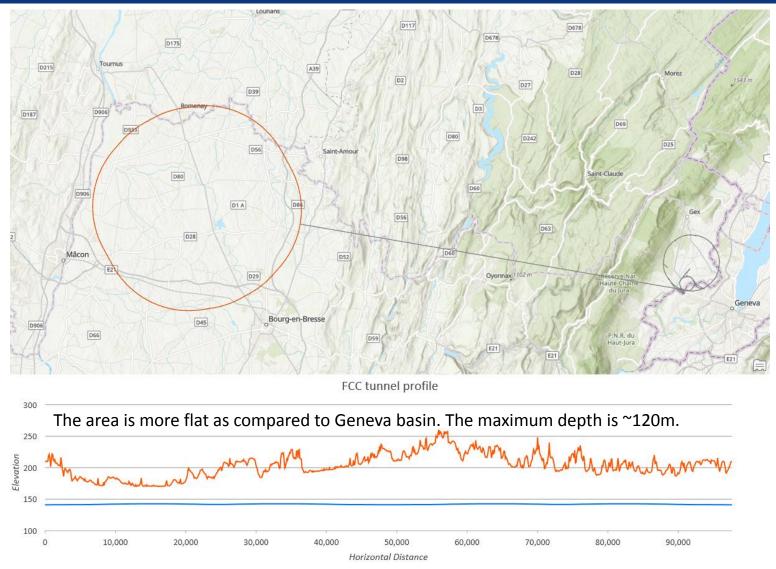
Continuous monitoring, maintenance and refurbishment works are necessary to extend the lifetime of the LHC tunnel for the use of a future particle collider.

FCC ring situated West of Jura with a single transfer line to LHC

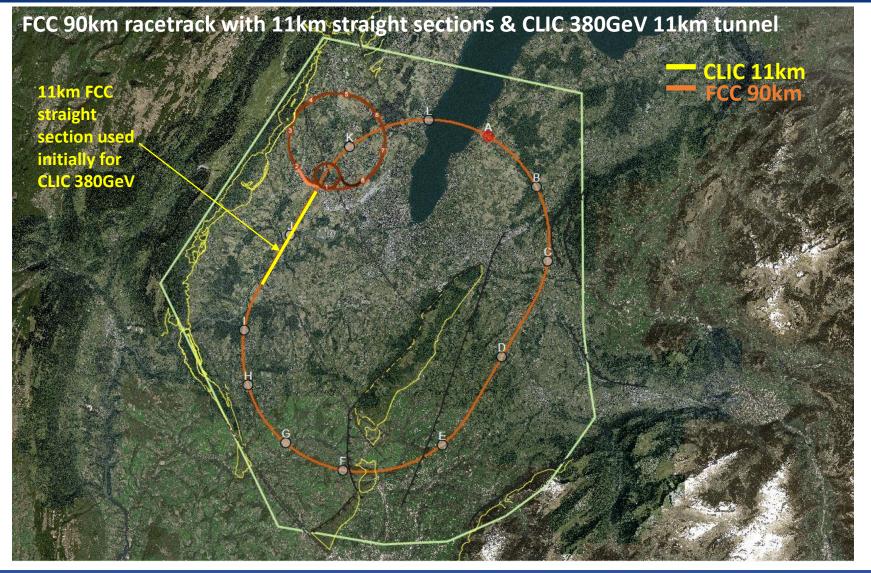


THIS CONCEPT IS NOT PART OF EUROPEAN STRATEGY INPUT !!

FCC ring situated West of Jura with a single transfer line to LHC


Variable geology – mainly soft ground : Bresse marls and clay. Locally sandstone and limestone. Some borehole show presence of gypsum.

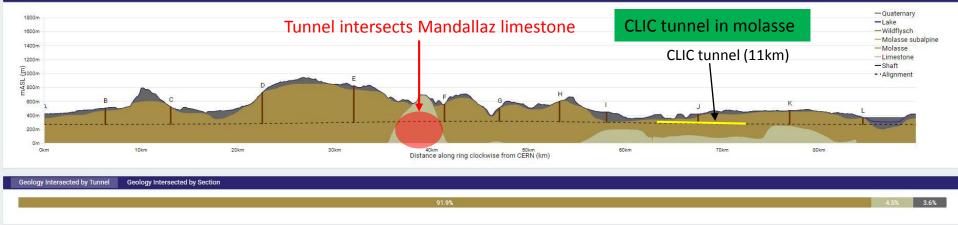
FCC ring situated West of Jura with a single transfer line to LHC


- An transfer line of 60km length connects LHC to FCC crossing through the Jura Mountains. This raises risks associated to tunnelling though limestone such as karstic features, water inflow and instability during excavation.
- High overburden (up to 1300m) and very deep shafts in the Jura.

FCC + CLIC combined alignments

THIS CONCEPT IS NOT PART OF EUROPEAN STRATEGY INPUT !!

FCC + CLIC combined alignments

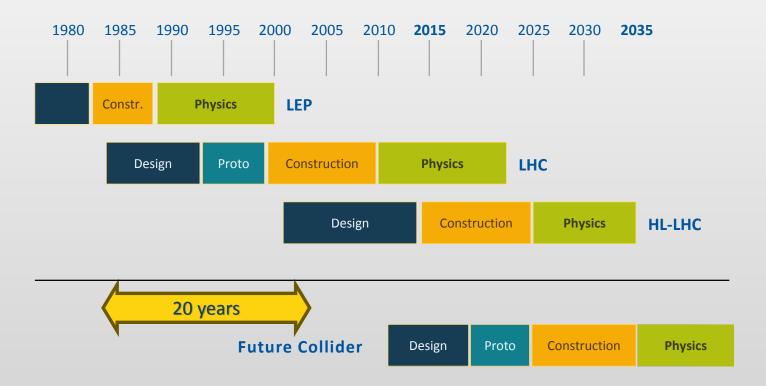

TOT output for FCC 90km racetrack + 11km CLIC

Alignment	Shafts	Query			Alignm	ent Location
Choose alignr	nent option				+	AND SCHOOLS
90km racetra	ck 11km straig	ht 🔻				
Tunnel elevati	on at centre:30	OmASL			-	
						and the second second
Grad. Params					-	K K
		Azimuth	(°): 30			
	SIG	ope Angle x-x(%): 0.1	14		
	SI	ope Angle y-y(%): 0			
1040	ODEATE	LIDDATE		CALCUL ATE		
	CREATE	UPDATE		CALCULATE		
Alignment cer	ntre			CALCULATE		
Alignment cer	ntre 1	UPDATE Y:	1111846			
Alignment cer	ntre		1111846	CALCULATE CP 2		
Alignment cer	tre 1 CP 1	Y:	1111846 ngle			G
Alignment cer K: 2499424	tre 1 CP 1	Y:		CP 2		d d d d d d d d d d d d d d d d d d d
Alignment cer X: 2499424 Angle	tre 1 CP 1 e Dept	Y: th A	ngle	CP 2 Depth		G F
Alignment cer X: 2499424 Angle LHC	tre 1 CP 1 e Dept	Y: th A 90m	ngle	CP 2 Depth 84m		G E

	K	X.		R.
1/ 1		L A		111
100			\$	a see
		1	1 2 8	
		17	- And the	
	G F	E E	100	1
	\sim			

			Shaft Depth (m)			Geology (m)			
Point	Actual	Molasse SA	Wildflysch	Quaternary	Molasse	Urgonian	Limestone		
A	151								
в	231								
С	248								
D	441								
E	520								
F	242								
G	189								
н	290								
i.	146								
J	136								
к	195								
L	98								
L	98 2886	0	0	10	2484	0			

Alignment Profile


More layouts combining FCC and CLIC have been studied.

THIS CONCEPT IS NOT PART OF EUROPEAN STRATEGY INPUT !!

What next for FCC (and/or CLIC ?!) : Long Term LHC Plan

Michael Benedikt – FCC Washington Workshop March 2015

Site investigation planning and preconstruction planning (FCC or CLIC similar)

FCC pre-construction schedule	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	
LHC Operation Period		Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 LHC run 3	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 LHC run		
LHC Operation Period		52		LACTURIS			125		LHC FUR	4	
CERN feasibility	Alig	nment optimisa	ation								
Site Investigation	4	15 A. 1	(geophysics & r surveys)	Principal SI - Phase 1	Principal SI - Phase 2		SI - Phase 3 I as necessary				
Consultant Contracts		Contract and t	ender strategy	Market Survey	Tender and Award	Preliminary design	Tende	r design	Construct	ion Design	
Construction Contracts								Market Survey	Tender a	nd Award 🗧 🥇	Start of Construct
EIA and permitting documents			E	nvironmental In	npact Assessme	ent and permittin	ng documentati	ion			

Types of site investigation:

- Collection of existing information
- Walkover survey
- Geophysical investigations (to define interfaces)
- Boreholes
 - Site testing (eg Insitu stress test, point load testing, SPT)
 - Rock laboratory testing.

Phases:

<u>Feasibility</u>: Non-intrusive investigations to allow consolidation of alignment. Focus on access points, Lake crossing and the Rhone and Arve crossings. <u>Principal</u>: Substantial portion of the geotechnical investigations. As a result of this, the alignment might need to be changed. <u>Additional</u>: Any investigations required for the final design, emphasis on obtaining date required for the contractors.

Administration

Thank you and Questions !

John Osborne