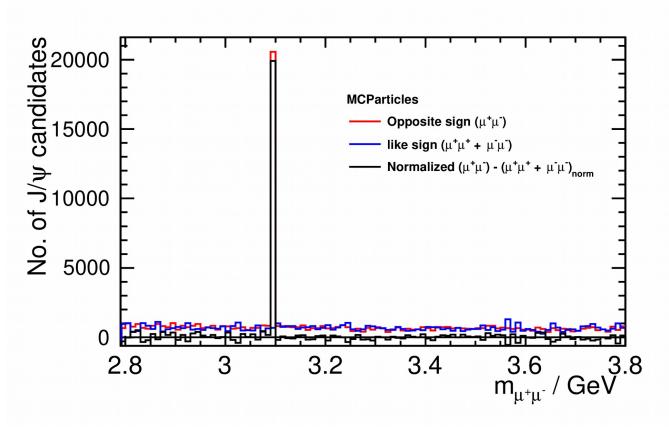
$J/\psi \rightarrow \mu^+\mu^-$ for detector calibration

Sepideh Hosseini (DESY) Hamburg, May 8, 2019 ILD Software and Analysis Meeting

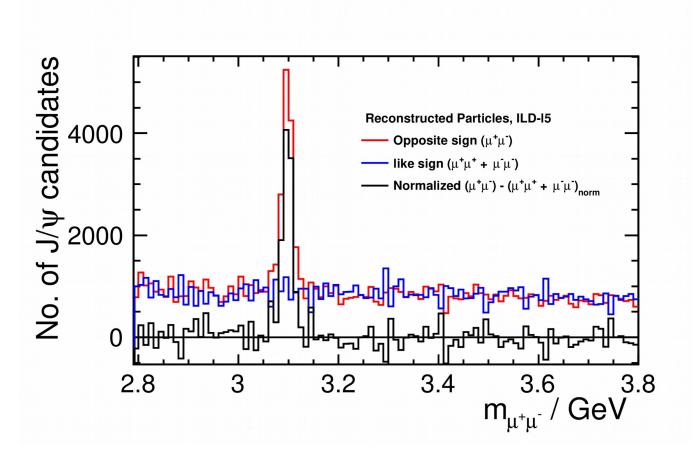

Introduction

- $J/\psi \rightarrow \mu^{+}\mu^{-}$ can be used for Detector calibration
- Goals:
 - Show J/ψ peak for ILD_I5/s5 in IDR
 - Find the number of J/ψ's
- Analysis:
 - Software version: ilcsoft-v02-00-02
 - Detector Models: ILD_I5_v2 / ILD_s5_v2
 - Full ILD Simulation at E_{cm} =500 GeV, P(±80%,±30%),(++,+-,-+,--), L_{int} =4ab⁻¹
 - 2f/4f-hadronic/semileptonic and 6f physics processes (totally 12m events)
 - MCParticles and PandoraPFOs collections

J/ψ's in generator level

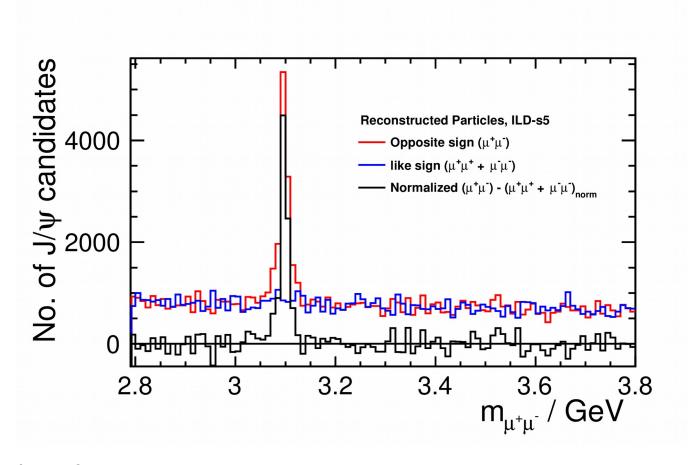
- Find $\mu^+\mu^-$ pairs in generator level (for each physics process):
 - Find first muon in the MCParticles collection (getPDG)
 - Look for the second muon
 - Check both muons to be different MCParticle (avoid double counting using id number)
 - Separate opposite-sign and like-sign pairs (according to PDGCode)
 - Form 4-momentum of muon pair combination in each class (opposite-sign / like-sign) and fill histograms by Inv. Mass.
 - Weight histograms for all 4 helicity configurations
 - Subtract opposite-sign by normalized like-sign to remove background
- Add up normalized histograms of all physics processes

Number of J/ψ 's in generator level

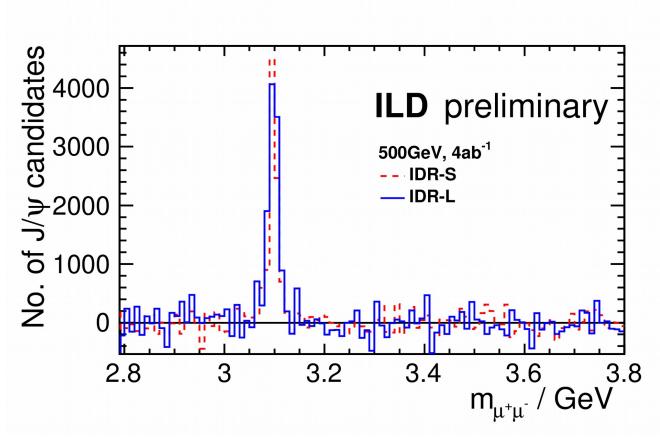


Number of events: 12m Total number of 19909 J/ψ's are in MCParticles

J/ψ's in PFO level


- Find $\mu^+\mu^-$ pairs in Reconstructed particles (for each physics process):
 - Find first muon in the PFOs collection (getType)
 - Look for the second muon
 - Check both muons to be different PFO (avoid double counting using id number)
 - Separate opposite-sign and like-sign pairs (according to Type)
 - Form 4-momentum of muon pair combination in each class (opposite-sign / like-sign) and fill histograms by Inv. Mass.
 - Weight histograms for all 4 helicity configurations
 - Subtract opposite-sign by normalized like-sign to remove background
- Add up normalized histograms of all physics processes

Number of reconstructed J/ψ→μ⁺μ⁻ in ILD-I5 detector


Number of events: 12m 11704 J/ ψ 's reconstructed in large detector (integration in peak region 3.05<m<3.15)

Number of reconstructed J/ψ→μ⁺μ⁻ in ILD-s5 detector

Number of events: 12m 9679 J/ ψ 's reconstructed in small detector (integration in peak region 3.05<m<3.15)

Candidate plot for IDR

- Small detector is more precise (stronger magnetic field and better momentum resolution; better mass resolution)
- Large detector finds more J/ψ's

Conclusion

- J/ ψ is candidate for calibrating the detector (m_{J/ ψ} =3096.900±0.006 MeV).
- Study number of J/Ψ at generator and reconstruction level
- DiMuonMass processor developed for finding J/Ψ's
- Found 19909 J/ ψ in MCParticle (E_{cm} =500GeV , L_{int} =4ab⁻¹ , P(±80%,±30%))
- Almost half of J/ψ's are not reconstructed in both detectors
 - Found 11704 J/Ψ in ReParticle in I5 (more number) and 9679 in s5 (better resolution)
- Next step: study cos(theta) vs pt for J/Ψ and muons