Top Quark Pair Production at ILC @ 500 GeV

Y. Okugawa, A. Irles, V. Lohezic, S. Amjad, R. Yonamine, F. Richard, H. Yamamoto, and R. Pöschl

okugawa@epx.phys.tohoku.ac.jp

September 6, 2019

Background

Standard Model

Y. Okugawa, A. Irles, V. Lohezic, S. Amjad, |

э

Motivation

Physics

- We look at top-quark pair production via electron-positron collision in ILC at 500 GeV scenario.
- Top-quark is the heaviest elementary particle we know as far as the Standard Model (SM) suggests. It's mass $m_{top} \approx 175$ GeV is on the same level as that of massive gauge boson.
- If we could assess the the coupling between Top quark and W boson, we would possibly be able to confirm electroweak symmetry breaking, indicating the physics Beyond SM.

3

< □ > < □ > < □ > < □ > < □ > < □ >

Physical Observables

Forward and backward asymmetry

$$A_{fb} \equiv \frac{N(\cos \theta > 0) - N(\cos \theta < 0)}{N(\cos \theta > 0) + N(\cos \theta < 0)}$$

where θ is a polar angle of top quark with respect to the beam line.

- A_{fb} is used as a key estimator for the electroweak coupling between top-quark in this analysis, yet does not address on actual physical values in this analysis.
- Decent measurement performance on vertex charge measurement is required to distinguish top and anti-top, in order to calculate reliable A_{fb} value.

< □ > < 同 > < 回 > < 回 > < 回 >

Collision

e- _____ e+

<ロ> <四> <四> <四> <四> <四</p>

Collision

3

<ロト <問ト < 目と < 目と

Collision

3

Collision

3

イロト イヨト イヨト イヨト

Collision

3

イロト イヨト イヨト イヨト

Collision

3

A D N A B N A B N A B N

Channel

Channel	Decay Channel	Probability
Full Hadronic	$t\overline{t} ightarrow b\overline{b}q\overline{q}^{\prime}q\overline{q}^{\prime}$	45.7%
Semi-leptonic	$t\overline{t} ightarrow b\overline{b} \; u_\ell \overline{\ell} q \overline{q}'$	43.8%
Full leptonic	$t\overline{t} ightarrow b\overline{b}\;\overline{\ell}\ell' u_\ell\overline{ u}_{\ell'}$	10.5%

Y. Okugawa, A. Irles, V. Lohezic, S. Amjad,

/ertex Charge Determination

September 6, 2019 11 / 21

Vertex Charge Measurement

Channel

Methods

Methods 1-4 (Rely only on hadronic charge information)

- $1 \ vtx \times vtx$
- 2 kaon \times kaon
- $3 \text{ vtx} \times \text{kaon}$
- 4 vtx \times kaon'

Methods 5-7 (Use isolated lepton charge)

- 5 vtx imes lepton, vtx' imes lepton
- 6 kaon \times lepton, kaon' \times lepton
- 7 lepton + Chi2 req.

¹All methods that have been used should be consistent with one another. $\blacksquare = -9 \circ 0$

Y. Okugawa, A. Irles, V. Lohezic, S. Amjad, I

Vertex Restoration

Vertex Restoration Process

- Securing prong candidates -Upon vertex restoration, the algorithm collects all charged particles as prong candidates. Then it will iterates through all candidates and reconstruct them as PFO.
- Check if there's any duplicates in PFOs.
- Vertex reconstruction will be done with above informations.

Vertex Restoration

Vertex Restoration Process

- Securing prong candidates -Upon vertex restoration, the algorithm collects all charged particles as prong candidates. Then it will iterates through all candidates and reconstruct them as PFO.
- Check if there's any duplicates in PFOs.
- Vertex reconstruction will be done with above informations.

Vertex Restoration

Vertex Restoration Process

- Securing prong candidates -Upon vertex restoration, the algorithm collects all charged particles as prong candidates. Then it will iterates through all candidates and reconstruct them as PFO.
- Check if there's any duplicates in PFOs.
- Vertex reconstruction will be done with above informations.

Vertex Restoration (charge purity)

Y. Okugawa, A. Irles, V. Lohezic, S. Amjad, |

э

Selection Scheme

Basic selection cuts:¹

- Lepton cut: Iso.Lep. > 5 GeV
- Hadronic mass: 180 < M_{Had} < 420
- *btag*1 > 0.8 or *btag*2 > 0.3
- Thrust: *thrust* < 0.9
- Top1 mass: $120 < m_{t1} < 270$
- W1 mass: 50 < m_{W1} < 250

Lorentz Gamma cuts:

- $\gamma_t^{had} + \gamma_t^{lep} > 2.4$ • $\gamma_t^{lep} < 2.0$
- b-quark Momentum cuts:
 - $|p|_{had} > 15 \text{ GeV}$

Y. Okugawa, A. Irles, V. Lohezic, S. Amjad, I

Top Quark Polar Angle

Figure: Left-handed top quark polar angle Figu

Figure: Right-handed top quark polar angle

Y. Okugawa, A. Irles, V. Lohezic, S. Amjad,

Bottom Polar Angle

Figure: Left-handed b polar angle

Figure: Right-handed b polar angle

Analysis

Efficiency and A_{FB}

nEvents	906218	(100.%)
after lepton cuts	862018	(95.1%)
after btag cuts (0.8 & 0.3)	760275	(83.9%)
after thrust cut	760275	(83.9%)
after hadronic mass cut	732110	(80.8%)
after reco T & W mass cut	687268	(75.8%)

Polarization	Left-handed		Right-handed	
A _{FB} Gen	0.329	N: 1812768	0.430	N: 376690
A _{FB} Reco	0.342	M: 277435	0.396	N: 292271
Final Efficiency	30.6%			

3

ヘロト ヘロト ヘヨト ヘヨト

Summary

Conclusion

- 30% of efficiency was achieved for left-handed case.
- Vertex Recovery did give enhancement on charge purity.
- Moving on to the full hadronic process this month.