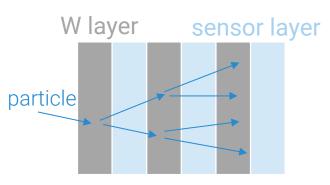
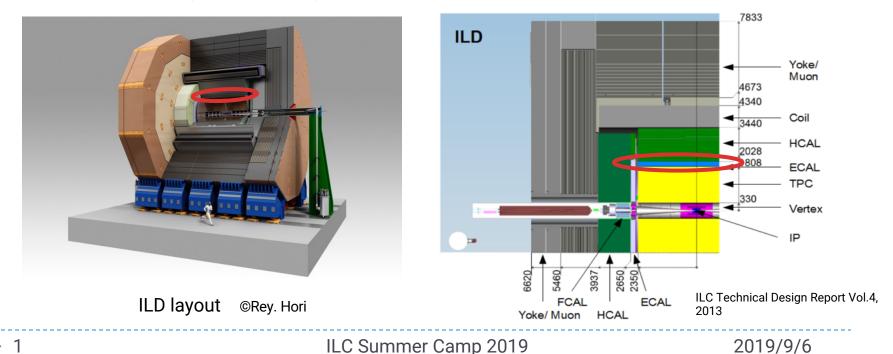
Optimizing the Scintillator Shape for the Electromagnetic Calorimeter


The University of Tokyo Takanori Mogi

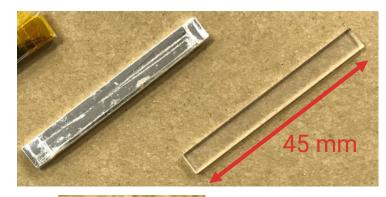
ECAL of ILD


Features

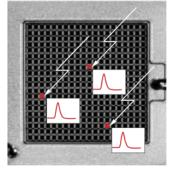
Sampling calorimeter of 30 layers Absorber: W (X_0 =3.5 mm, R_M =19 mm)

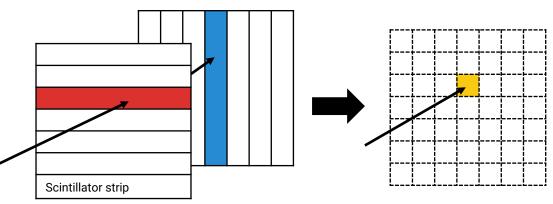
Options of sensor layer

SiECAL(silicon pad): **high precision**, 100 million channels ScECAL(scintillator): **10 million channels, low cost**



Scintillator ECAL


- Scintillator strip + SiPM
 - Scintillator strip plastic scintillator with ESR film size : 5 mm x 45 mm x 2 mm
 - SiPM (PPD, MPPC[®], ...)
 - photosensitive area : 1 mm x 1 mm pixel pitch : 10 um or 15 um, gain : **10**⁵


$E_{loss} \propto num. of photon$

Strip Splitting Algorithm

5 mm x 5mm pseudo pixel → 10,000,000 channel

1/10 of 5 mm x 5 mm scintillator tile

Readout Method

- Requirement for sci. : Enough light amount for M.I.P, Good uniformity
- Conventional readout methods

Readout method	Side readout	Bottom readout		
Advantage	Good light amount(for M.I.P)	No dead space Good light yield uniformity		
Disadvantage	2% dead space Bad light yield uniformity	Poor light yield (~0.5 x side readout)		
	SiPM scintillator			

Recently, another type of readout method was proposed by Chinese group

→Dimple readout: SiPM is implanted into a dimple

good light yield? good uniformity?

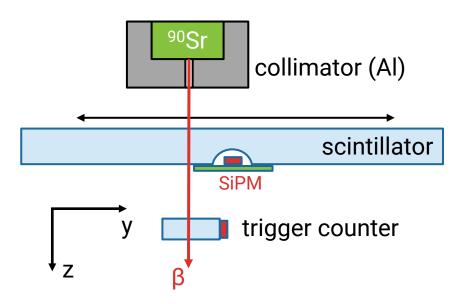
 \rightarrow Confirm characteristics of this readout method

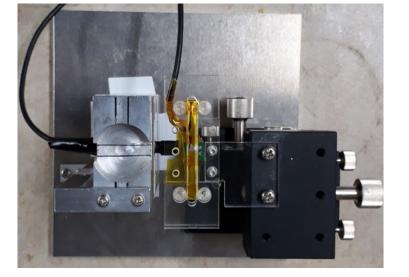
- today's talk
 - ScECAL for ILD (Done)
 - Measurement about dimple readout
 - Simulation to reproduce result of measurement
 - Comparison of simulation and measurement

Goal of my study

• Optimizing the scintillator shape for ILD by using simulation

ILC Summer Camp 2019

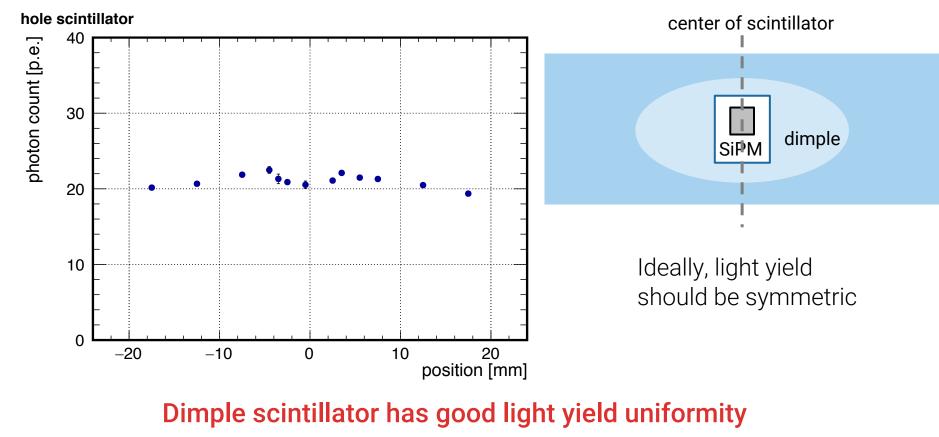

Measurement Setup


Measure light yield in scintillator with dimple

Depth of dimple: 0.69 mm SiPM: S12571-015P, dV = 4 V Checking source : ⁹⁰Sr

Collimator : diameter 0.5 mm

Moving stage : 0 mm(x-direction), \pm 20 mm(y-direction)



Light Yield vs. Position

Mean light yield is about 21 photoelectron (p.e.)

At this measurement, position alignment is not perfect...

center of scintillator is not 0 mm position

ILC Summer Camp 2019

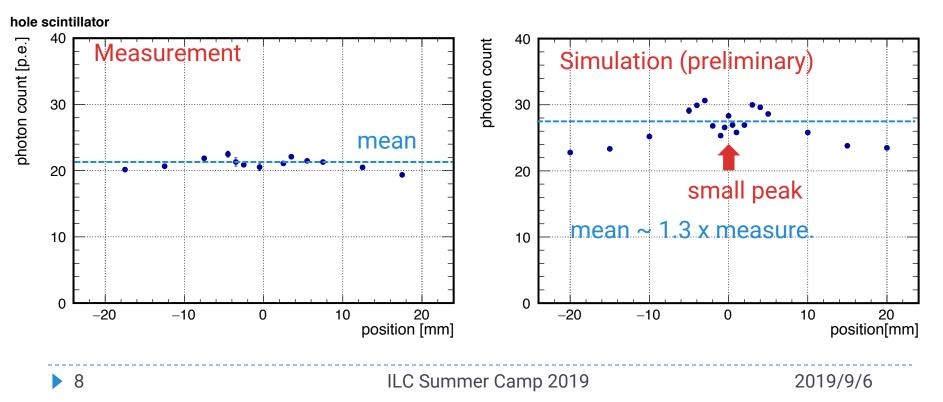
2019/9/6

Simulation Method

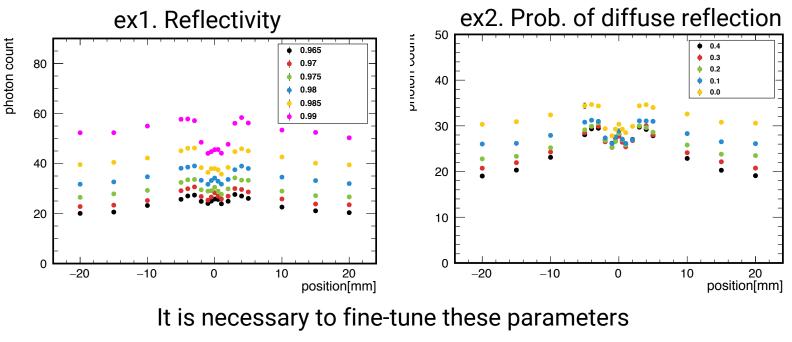
Reproduce the result of measurement, and optimize scintillator shape by simulation

 \rightarrow Photon tracing simulation using C++ with Geant4

Condition of simulation

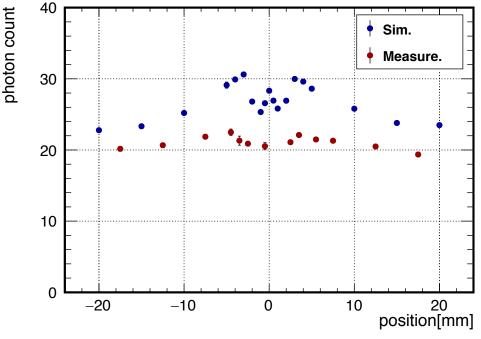

- Scintillator: 5 mm x 45 mm x 2 mm
- SiPM: 1 mm x 1 mm (photosens. area)
- Hole shape: Chinese group type
- Hole depth: 0.69 mm
- reflectivity: 97%
- collimator diameter: 1 mm
- collimator depth: 3 mm
- trigger scintillator: 5 mm x 5 mm

Simulation


- Comparison with measurement
 - Mean light yield of simulation is slightly higher than result of measurement
 - Behaver of position dependence is similar to measurement
 - In simulation result, there is a small peak around the 0 mm position

Simulation Parameters

parameters are under tuning...


- reflectivity
- reflection rate at scintillator surface
- surface roughness of scintillator
- surface roughness of dimple
- etc.

Summary of Simulation

- Difference between results of simulation and measurement
 - Mean light yield of simulation is slightly higher than result of measurement
 - In simulation result, there is a **small peak** around the 0 mm position
- To optimize shape,
 - Measure light yield more precisely

 (at interval of 0.5 mm)
 - Estimate exact parameter by measurement result
 - Reproduce result of other readout methods

New measurement is in progress (It will be done in October)

Summary and Outlook

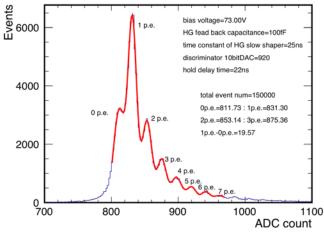
- ScECAL, scintillator strip, readout method, measurement, simulation
- Light yield uniformity of dimple scintillator was confirmed by measurement
- Simulation can reproduce the behaver of the measurement, but light yield is slightly different, and simulation result has small peak around SiPM
- To match result of simulation and measurement, we need to update the setup of light yield measurement

Future plan

Determine best shape by simulation, and make the shape to measure light yield

Back up

SiPM


Structure

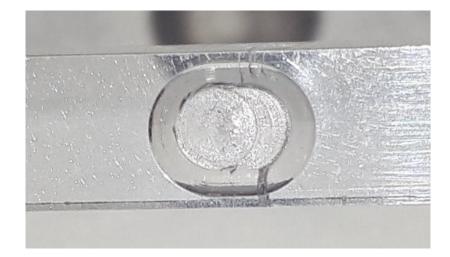
Parameter	Symbol	S12571			Linit	
		-010C	-010P	-015C	-015P	Unit
Effective photosensitive area	-	1 × 1		1 × 1		mm
Pixel pitch	-	10		15		μm
Number of pixels	-	10000		4489		-
Geometrical fill factor	-	33		53		%
Package	-	Ceramic	Surface mount type	Ceramic	Surface mount type	-
Window	-	Silicone resin	Epoxy resin	Silicone resin	Epoxy resin	-
Window refractive index	-	1.41	1.55	1.41	1.55	-

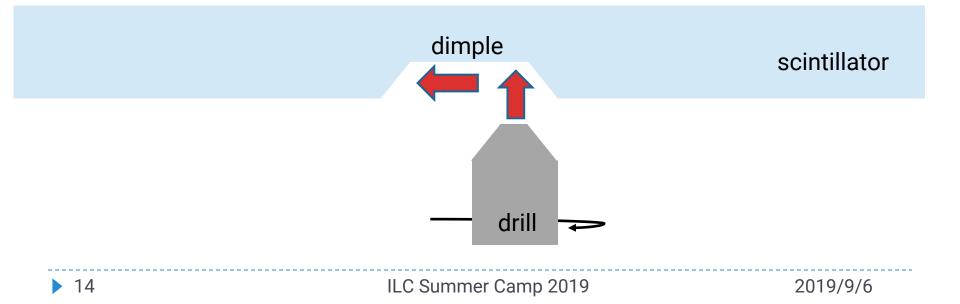
Electrical and optical characteristics (Ta=25 °C, unless otherwise noted)

Parameter		Cumhal	S12571			Linit	
		Symbol	-010C	-010P	-015C	-015P	- Unit
Spectral response range		λ	320 to 900		320 to 900		nm
Peak sensitivity wa	ivelength	λр	470		460		nm
Photon detection efficiency $(\lambda = \lambda p)^{*4}$		PDE	10		25		%
Dark count*5 Typ. Max.		100		100		kene	
	Max.	-	200		200		- kcps
Time resolution (F	WHM)*6	-	30	00	250		ps
Terminal capacitan	ice	Ct	3	5	3	5	pF
Gain		М	1.35 × 10 ⁵		2.3 × 10 ⁵		-
Gain temperature	coefficient	ΔΤΜ	1.6 × 10 ³		3.5 × 10 ³		/°C
Breakdown voltage	9	VBR	65 ± 10		65 ± 10		V
Recommended oper	ating voltage	Vop	VBR + 4.5		VBR + 4.0		V
Temperature coefficient of recommended operating voltage		ΔTVop	60		60		mV/°C

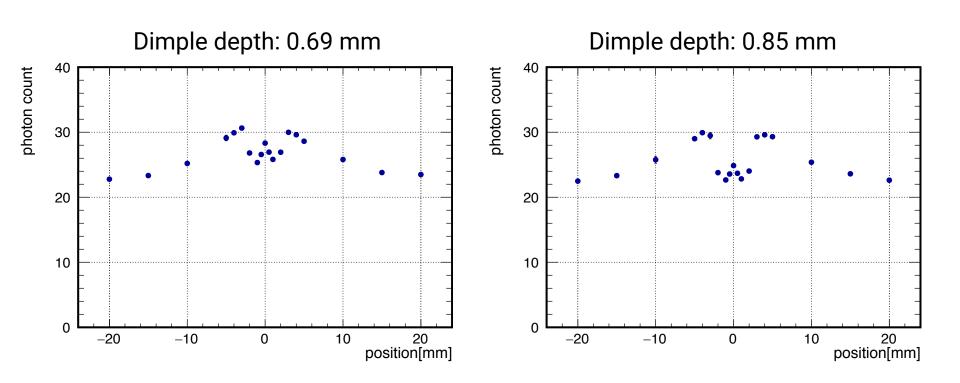
15um pitch MPPC(S12571-015P):dark noise

*4: Photon detection efficiency does not include crosstalk or afterpulses.


*5: Threshold=0.5 p.e.


*6: Single photon level

Note: The above characteristics were measured the operating voltage that yields the gain listed in this catalog. (Refer to the data attached to each product.)


The last letter of each type number indicates the package type (C: ceramic, P: surface mount type).

Dimple Shape

Dimple Depth

ILC Summer Camp 2019