

Study of H γ Z coupling using e+e- -> γ H at the ILC Yumi Aoki(SOKENDAI) Tian Junping, Keisuke Fujii, Sunghoon Jung, Junghwan Lee, Hiroshi Yokoya 2019.9.5(Thu) ILC Summer Camp2019@Itako

1.Motivation

Find new physics via H $\gamma \gamma$ and H γZ couplings

Higgs to γZ coupling in the Standard Model (SM) is a loop induced coupling.

Example of new physics : Inert Doublet Model

In this Inert Doublet Model, there is charged higgs which can modify this h gamma Z vertex

This plot shows the relative deviations of the e+e- to $h\gamma$ cross section and the h to $\gamma\gamma$ decay rate from the Standard Model values.

Depending on model parameters, the deviation can be as large as 100%. Mawatari, et a

Mawatari, et al, arXiv:1808.10268

2. Theoretical framework for our analysis

The effective Lagrangian to include new physics contributions to the

e+e- to hy cross section model-independently

3.Experimental Method

Coupling constant $L_{\gamma H} = L_{\rm SM} + \underbrace{\frac{\zeta_{AZ}}{v}}_{v} A_{\mu\nu} Z^{\mu\nu} H + \underbrace{\frac{\zeta_{A}}{2v}}_{2v} A_{\mu\nu} A^{\mu\nu} H$

measure this 2 parameters

(1) Measure the cross sections of e+e- -> γ h for two different beam polarizations So that ζ_{AZ} and ζ_A can be determined separately

② Since ζ_A can be constrained already by measurement of $h \rightarrow \gamma \gamma$ branching ratio at LHC, we can extract ζ_{AZ} parameter by just measuring cross section for a single polarization.

3. Experimental Method (Continued)

The total cross section in EFT is calculated by full loop SM amplitude and interference between SM and EFT operators

 \rightarrow The cross section normalized to SM can be written as below

interference between one-loop SM amplitude and EFT

$$\frac{\sigma_{\gamma H}}{\sigma_{SM}} = 1 - 201\zeta_A - 273\zeta_{AZ} \qquad \text{(eLpR)}$$

$$\frac{\sigma_{\gamma H}}{\sigma_{SM}} = 1 + 492\zeta_A - 311\zeta_{AZ} \qquad (eRpL)$$

4.Simulation framework

• Physsim $\sqrt[4]{s=250 \text{ GeV}}$ Integrated Luminosity: 2000 fb⁻¹ back ground : DBD sample

ILD full simulation (Mokka)

iLCSoft v01-16-02
 MarlinReco, PandoraPFA,
 LCFI+, Isolated photon finder, jet clustering

Strategy

Signal: $e^+e^- \rightarrow \gamma H \rightarrow \gamma (b\overline{b})$

Signal signatures

- 1. Isolated monochromatic photon with energy 93 GeV
- 2. 2 b jets
- 3. m(bb) (invariant mass) = higgs mass

Main backgrounds

e+e- -> γ qq(bar) dominated by e+e- $\rightarrow \gamma$ Z (radiative return)

① Pre selection

- Isolated photon
 - Photon ID
 - \blacktriangleright E_Y > 50 GeV

h->bb

- The split photon clusters within a small cone are recovered cone angle(cosθcone=0.998)
- Other particles
 - clustered into 2jet (using Durham)
 - ► Flavor tagged (LCFI+)

Final selection Cut 1:b likeliness $1>0.77 \rightarrow$ Suppress light flavor vs

5. Event selection

 $(\mathbf{2})$

-Cut 1:b likeliness1>0.77 \rightarrow Suppress light flavor γqq

* This plot is for events after the pre selection

h->bb

2 Final selection -Cut 2: missing energy<35 GeV

Separation by using TMVA

Multivariate Data Analysis

The cut based analysis Parameter2 The multivariate data analysis Parameter2

 $\rightarrow \text{TMVA}$ describes signal-background boundary more flexibly

Input variables for MVA

Angle between 2 jets (In higgs rest system)

Input variables for MVA

The distributions of each variable for signal and background

The higgs invariant mass

Polar angle of photon

Energy of photon

Angle between 2 jets

Smaller angle between photon and a jet

7. Separation by using TMVA

	Before cut	After cut
# of signal	151	63
# of background	4338170	20342

Significance = 0.44

6. Result	h->bb	significance	$=\frac{N_s}{\sqrt{N_s+N_B}}$		
Reduction table	Reduction table Preliminary		N _s :Number of signal N _B :Number of back ground		
	Signal	background	Significance		
Expected	237	3.14×10 ⁸	0.01		
Pre selection	222	6.54×10 ⁷	0.02		
btag>0.8	200	4.96×10 ⁶	0.09		
E _{mis} <35	182	4.30×10 ⁶	0.09		
mvabdt > 0.0126	75	1.98×104	0.53		

① Pre selection

Signal:
$$e^+e^- \to \gamma h \to \gamma (WW^*) \to \gamma$$
 (4f)

Signal signatures

- 1. Isolated monochromatic photon with energy 93 GeV
- 2. 4 jets (fully hadronic)
- 3. m(4jet)= higgs mass
- 4. one of m(2jet) = W mass

Main backgrounds

 $e^+e^- \rightarrow W^+W^-(\gamma)$

1 Pre-selection

- Isolated photon
 - Photon ID
 - ► E_γ> 50 GeV

*The split photon clusters within a small cone are recovered

- \rightarrow Left events except photon
 - ► 2jet clustering (Durham)
 - ► Flavor tagged (LCFI+)

For signal number of decay w to qq=2

h->WW

Strategy

h->WW Strategy $e^+e^- \to \gamma h \to \gamma (WW^*)$ $e^+e^- - > W^+W^-(\gamma)$ mass other than real W mass other than real W m(W2) ~80 GeV < 50 GeV m(4jets) = higgs massm(4jets) m(4jets) = center mass energy Energy of photon Energy of isolated mγ monochromatic photon ~small ~93 GeV

6. Reduction

2f

n table				n->v	
_h	4f_h	total bg	Signal	Signal hadronic	Significance
93000	33599400	314154000	88.5	40.2	0.005
78300	760090	61010200	80.5	37.7	0.01
95600	681904	11233500	36.5	32.0	0.01
0470	591493	6646540	28.0	25.9	0.01

Expected	156093000	33599400	314154000	88.5	40.2	0.005
Pre selection	27978300	760090	61010200	80.5	37.7	0.01
# of particle>5	10295600	681904	11233500	36.5	32.0	0.01
<pre># of charged particle >1</pre>	5940470	591493	6646540	28.0	25.9	0.01
log10(y43)>-2.5 log10(y32)>-1.8	951914	527681	1515780	21.8	20.9	0.02
65 <mw1<90< td=""><td>348875</td><td>495465</td><td>860262</td><td>19.2</td><td>18.9</td><td>0.02</td></mw1<90<>	348875	495465	860262	19.2	18.9	0.02
20 <mw2<60< td=""><td>235286</td><td>311623</td><td>559275</td><td>17.6</td><td>17.4</td><td>0.02</td></mw2<60<>	235286	311623	559275	17.6	17.4	0.02
115 <mx<135< td=""><td>53738</td><td>15634</td><td>74447</td><td>15.7</td><td>15.6</td><td>0.06</td></mx<135<>	53738	15634	74447	15.7	15.6	0.06
90 <eγ<100< td=""><td>21447</td><td>5494</td><td>27290</td><td>11.8</td><td>11.8</td><td>0.07</td></eγ<100<>	21447	5494	27290	11.8	11.8	0.07
-0.9 <cos0<0.9< td=""><td>10636</td><td>3758</td><td>14525</td><td>10.3</td><td>10.3</td><td>0.09</td></cos0<0.9<>	10636	3758	14525	10.3	10.3	0.09

7. Summary

I simulated and analyzed e+e- -> h gamma process

- Significance for e+e- ->hγ process (h->bb)
 - ~ 0.53 σ for SM at \sqrt{s} =250 GeV, 2000 fb⁻¹
- ► h->WW* : on going

Next step

Fully hadronic

-Cut based : + b likeliness cut

-TMVA

· Semi leptonic (lvqq)

Back up

Optimization of mva

26

Optimization of missing energy

W reconstruction

We need to find combination of 2 jet from 4 jet of real W

 $(m_w = 80.379)$

Set ∆m=999999 choose 2 jet in 4 jet Sum masses of the 2 jet(m_{2j}) $|m_{2j} - m_w| < \Delta m$ No Yes Save m_{2j} as m_{w1} Update Δm

ŹΟ

Jet clustering

General strategy

Merge a pair of particles whose "Distance" is the smallest until a condition meets "Criteria"

"Distance"

Durham algorithm : $Y_{ij} = 2 \frac{\min[E_i^2, E_j^2](1 - \cos \theta_{ij})}{E_{vis}^2}$, θ_{ij} : angle between P_i and P_j k_t algorithm : $d_{ij} = \min[p_{T_i^2}, p_{t_j^2}]\frac{R_{ij}}{R}$ or $d_{iB} = p_{t_i^2}, R_{ij}^2 = (\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2$ η : pseudo rapidity, ϕ azimuthal angle

"Criteria"

- Number of remaining particles is equal to N_{Req}
- The smallest distance is smaller than D_{Req}

Back ground

		characteristic	How to remove	
ff		back to back	cosθ2f	
	γII	few track number	nTrack	
γZ→γ(f f)	yqq,ycc	no b	b-tag	
	γbb	different angular distribution	Εγ,cosθγ	
	common	m(bb)~m(Z)	m(ff)	
	4j	4 jet	Y3→2, Eγ	
Z+Z-	2j+2l	Nisolep=2	N _{isolep} =0, Ey	
W+W-→4f	2j+vv	large missing energy	E _{miss} ,Εγ	
	2j+lv	missing energy	N _{isolep} =0, E _{miss}	
	common m(ff)=m(W)		b-tag, m(ff)	
	l:lepton	q:quark j:jet v:ne	utrino 30	