Operation at Z-pole for ILC@250

Kaoru Yokoya, Kiyoshi Kubo, Toshiyuki Okugi 2019-0604 TCMB

Z-pole Operation of ILC@250

- This report presents preliminary study results about the Z-pole (E_{CM} =91.2GeV) operation of ILC@250, assuming the undulator scheme for positron production.
- The possibility of Z-pole operation was discussed at the LCWS2016 at Morioka in Dec.2016 .
 - LCWS2016-ZpoleOperation-Yokoya.pptx in <u>https://agenda.linearcollider.org/event/7371/contributions/38173/</u>
 - It only gave a speculation by a scaling law and some comments on the issues to be studied
- The situation has changed since then
 - ILC energy is now 250GeV rather than 500GeV with a shorter linac
 - The baseline luminosity at 250GeV has been improved from 0.82E34 to 1.35E34 since AWLC at SLAC in Jun.2017, by adopting a reduced (halved) horizontal emittance with a new lattice of the damping ring.

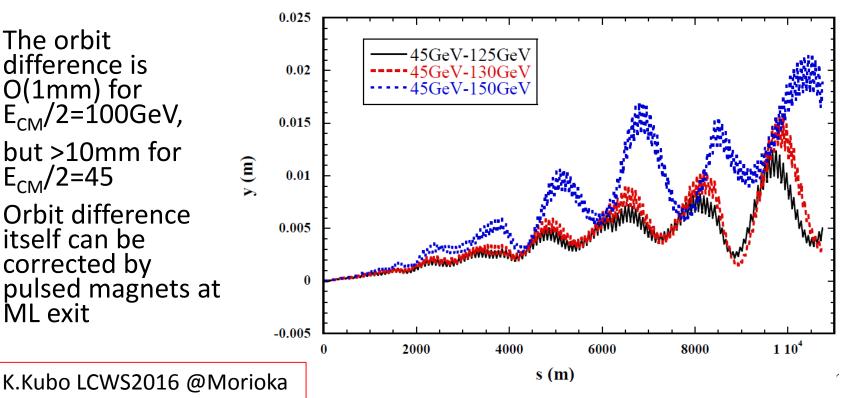
Issues to Be Considered

- Repetition rate
- Damping Ring
 - Dynamic aperture
- Main Linac
 - Alternating operation 125GeV $\leftarrow \rightarrow$ 45.6GeV
 - Emittance growth due to the low gradient
- BDS
 - Momentum bandwidth
 - Collimation depth
 - Final quads
- Beam-Beam

Repetition Rate

- Obviously, the electron beam with energy E=91.2/2=45.6 GeV is not sufficient to produce the positron beam
- TDR adopted 5+5Hz operation at E_{CM} =250GeV, assuming the power system for 500GeV
 - 5Hz to produce positron, 5Hz for colliding beam
 - Assumed positron production at E_e=150GeV
 - No power problem
 - The required power for 150GeV (5Hz) + 45.6GeV (5Hz) is lower than that for 250GeV (5Hz)
- However, the power system of ILC@250 is not sufficient for 5+5Hz operation
- Here, we assume 3.7+3.7 Hz operation is possible
 - This value was estimated by T. Matsumoto
 - Klystron output power can be changed at 5Hz but the loaded Q (5.46x10⁶) cannot be changed
 - Assume same bunch interval (554ns) for 125 and 45.6GeV
 - Parameters:
 - Gradient 31.5 ← → 8.76 = 31.5x (45.6-15)/(125-15) MV/m
 - Peak power per cavity 189 $\leftarrow \rightarrow$ 77.2 kW
 - Klystron peak power $9.82 \leftrightarrow 4.15 \text{ MW}$
 - Klystron efficiency $67\% \leftrightarrow 53\%$
 - Modulator output 14.66 $\leftarrow \rightarrow$ 7.83 MW
 - Fill time 0.927 ← → 0.328 ms
 - RF pulse length $1.65 \leftrightarrow 1.06$ ms
 - Rep rate $5 \leftrightarrow 3.73 \text{ Hz}$

Damping Ring


- Horizontal emittance improved $6\mu m \rightarrow 4\mu m$ (AWLC2017@SLAC)
- Reinforce the wigglers for the shorter time for damping
 - 5Hz: 200ms → 3.7+3.7Hz : 270ms/2=135ms
 - Wigglers are ready (TDR)
- Dynamic aperture of the new lattice with stronger wigglers must be confirmed
 - It may be possible to split 270ms into, e.g., 150ms+120ms such that more time is assigned for the beam for collision
 - Here, we assume OK.

Main Linac (1)

- Orbit difference between 125 and 45.6GeV beams (due to the vertical curvature of the earth)
 - Kubo's estimation in LCWS2016 was ~10mm for ILC@500 (45GeV ←→ 150GeV in 10km linac) (see next page)
 - Must be smaller for $45 \leftarrow \rightarrow 125$ GeV in 5km linac
 - Can be corrected by pulsed magnets at the end of electron main linac
- Emittance degradation in the undulator (not a linac issue)
 - Resistive wall wake
 - Presumably OK
 - But, if not, we need a beamline to bypass the undulator section (~700m, not expensive at all) and pulsed magnets

Beam Dynamics : Positron production beam

- 2 different energy beams in electron main linac
- Orbit is tuned for the colliding beam $(E_{CM}/2)$
- The positron production beam (125GeV or 150GeV) will shift vertically due to earth-following curvature)
- The orbit difference is O(1mm) for $E_{CM}/2 = 100 GeV$,
- but >10mm for $E_{CM}/2=45$
- Orbit difference itself can be corrected by pulsed magnets at ML exit

250GeV Linac !!

2019 Zpole TCMB, Yokoya

K.Kubo EDMS D*01133735

Main Linac (2)

- Emittance growth of the beam for collision in the main linac (the beam for positron production is not an issue)
 - ε_{vDR} = 20nm, growth budget 10nm in ML
 - Full gradient operation followed by detuned cavities is ideal from beam dynamics and from klystron efficiency point of view
 - But 5Hz detuning by piezo is difficult (too large detuning). Must adopt uniform acceleration with reduced gradient.
 - Kubo's simulation showed $\Delta \epsilon_v / \epsilon_{yDR} = 0.8$ when 250GeV 10km linac is operated for 45GeV (see next page)
 - The growth consists of mainly two terms:
 - a. Proportional to (energy spread)²
 - b. Proportional to (wake)²
 - Both are smaller than in the case of 45GeV in 250GeV linac
 - a. is proportional to the linac length (for given energy spread)
 - b. is proportional to 1/gradient²
 - Should be OK for 45.6GeV operation of 125GeV 5km linac
 - Must be confirmed
 - Later, a longer bunch will be discussed in this report (BDS)
 - Energy spread is smaller : (a) becomes smaller
 - But wake is stronger : (b) becomes larger
 - Simulations needed

Emittance growth vs. final energy

Average of 40 random seeds. Error bar: standard deviation.

K.Kubo LCWS2016 1.4 1.2 1 0.8 <u>Δε/ε</u> 0.6 0.4 0.2 0 50 100 150 250 200 0 **Final Beam Energy (GeV)**

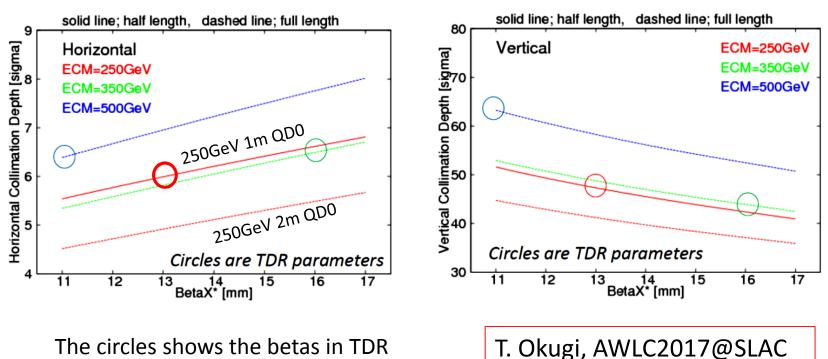
20161201 K.Kubo, preliminary

- $\varepsilon_0 = 20$ nm
- Linac length for 250GeV
- Uniform gradient over whole linac
- Random alignment errors
- DFS correction

Luminosity with a Simple Scaling

- L = $f_{rep} \times N_{bunch} \times N^2 / 4\pi \sigma_x \sigma_y$
- Naive scaling: $\sigma_x \sigma_y$ is proportional to sqrt($\varepsilon_x \varepsilon_y$) ~ 1/E_{CM} \rightarrow L ~ E_{CM}
 - This would give 1.35E34 (250GeV, 5Hz) → 0.364E34 (91.2GeV, 3.7Hz)
- But the larger beam divergence near IP due to the larger emittance at low energies would cause background.
 - The synchrotron radiation from halo particles from upstream hit the final quadrupole magnets
 - IP beam angle is proportional to

$$\sqrt{\varepsilon_{x(y)}}/\beta_{x(y)}$$


- These particles must be collimated out in the collimator section
- E_{beam} =125GeV with TDR parameters (ϵ_x =10µm/ γ , ϵ_y =35nm/ γ , β_x^{*} =13mm, β_y^{*} =0.41mm) are already at the limit of horizontal collimation depth ~6 σ_x (vertical still has big room: >40 σ_y). (see next page)

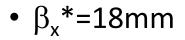
Collimation Depth with TDR Params

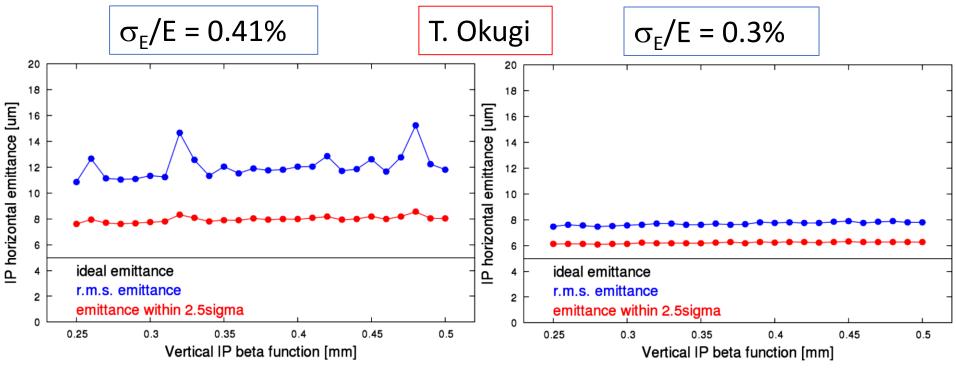
The collimation depth for various beam energy

ECM	BetaX*	BetaY*
250GeV	13mm	0.041mm
350GeV	16mm	0.034mm
500GeV	11mm	0.048mm

(QF1 L*) = 9.5m (QD0 L*) = 4.1m

Luminosity with a Simple Scaling (2)

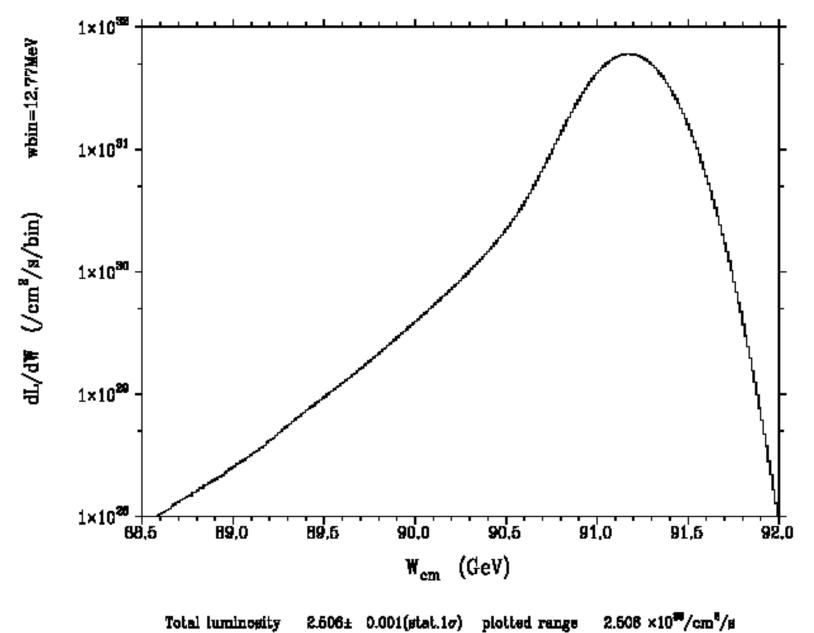

- Now, owing to the new DR design, the horizontal emittance has been improved : $\epsilon_x^*=10 \rightarrow 5\mu m/\gamma$
- However, γ is 45.6/125 = 0.365 times smaller at Z-pole
- Hence, to keep the collimation depth $\sim 6\sigma_x$, the horizontal beta must be β_x *=13mm x 0.365/(5/10) = ~18 mm (same β_v *=0.41mm)
- Therefore, a simple scaling law predicts $L_{Z-pole} = 1.35 \times 10^{34} \times 0.365 \times \sqrt{\frac{13}{18}} \times (3.7Hz/5Hz)$ $= 0.31 \times 10^{34}$
- A beam-beam simulation by CAIN with these parameters (β_x *= 18 mm, β_y *=0.41mm, ϵ_x =5µm/ γ , ϵ_x =35nm/ γ , 3.7Hz, σ_z =0.3mm, σ_E /E= 0.41%) gives L = 2.9 x 10³³, L(1%)=97.3%, n_{γ} = 0.92, δ_{BS} = 0.25%


BDS

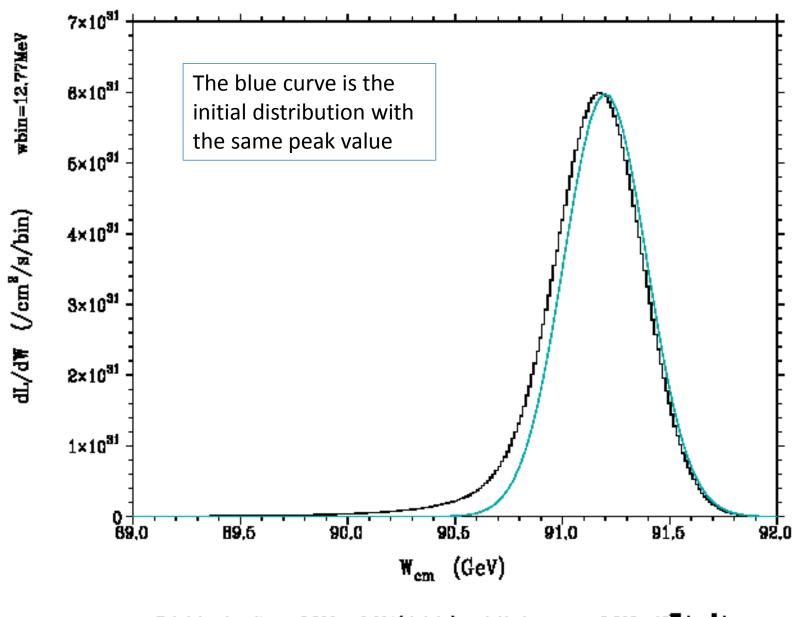
- However, Momentum band width in FFS is a bottle neck
 - Beam energy spread $\,\sigma_{\rm E}/{\rm E}$ =0.41% (proportional to 1/E, 0.15% for 125GeV)
 - Energy spread increase in ML and undulator is negligible
 - Horizontal emittance increases in FFS (β_x *=18mm, β_y *=0.41mm) from 5nm to more than 8nm
 - Better to use a smaller energy spread by adopting a longer bunch, e.g., $(\sigma, \sigma' F) = (0.2 \text{ mm}, 0.41\%) \rightarrow (0.41 \text{ mm}, 0.20\%)$
 - $(\sigma_z, \sigma_E/E) = (0.3 \text{mm}, 0.41\%) \rightarrow (0.41 \text{mm}, 0.30\%)$
 - This combination makes the horizontal emittance at IP ~6.2nm (T. Okugi). The increase from 5nm is still sizable, but let us be satisfied with this.
- It may be possible to adopt new final quads with larger apertures dedicated to Z-pole operation (to relax the collimation depth)
 - Required fields are low for 45.6GeV
 - To be studied next time

Increase of horizontal emittance in BDS due to the momentum band width

- Final emittance vs. β_v^*
- 2 curves: r.m.s. emittave and 2.5σ emittance



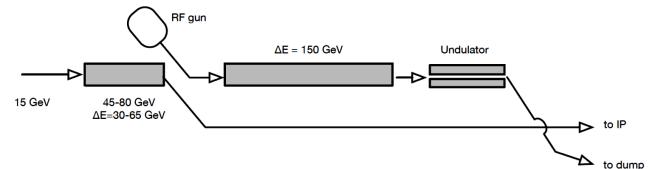
Preliminary Parameters


- We assume the parameters listed here →
- 45.6 ← → 125 GeV
- 3.7+3.7Hz operation
- $(\epsilon_{nx}^{*}, \epsilon_{ny}^{*}) = (6.2 \text{nm}, 35 \mu \text{m})$
- $(\beta_x^*, \beta_y^*) = (18mm, 0.39mm)$
- L = 2.46 x 10³³ /cm²/s
- Center-of-mass energy spectrum : next pages (log and linear scale)
- Beamstrahlung is very small
 - But not easy to make use of this

Parameters of Operation at Z-pole				
Center-of-Mass Energy	E _{CM}	GeV	91.2	
Beam Energy	E_{beam}	GeV	45.6	
Collision rate	f _{col}	Hz	3.7	
Electron linac rep.rate		Hz	3.7+3.7	
Electron energy for e+ prod.		GeV	125	
Number of bunches	n _b		1312	
Bunch population	Ν	10 ¹⁰	2	
Bunch separation	$\Delta t_{\rm b}$	ns	554	
RMS bunch length	σ_{z}	mm	0.3	
RMS Beam energy spread	σ_{p}/p	%	0.41	
Emittance from DR (x)	$\gamma \epsilon^{DR}_{x}$	μm	20	
Emittance from DR (y)	$\gamma \epsilon^{DR}_{v}$	nm	4	
Emittance at IP (x)	γε [*] ×	μm	6.2	
Emittance at IP (y)	γε [*] ,	nm	35	
Electron polarization	P_	%	80	
Positron polarization	P+	%	30	
Beta_x at IP	β_{x}^{*}	mm	18	
Beta_y at IP	β* _v	mm	0.39	
Beam size at IP (x)	σ^*_x	μm	1.1183	
Beam size at IP (y)	σ^*_v	nm	12.37	
Disruption Param (x)	Dx		0.303	
Disruption Param (y)	Dy		27.40	
Geometric luminosity	Lgeo	10 ³³	1.117	
Luminosity	L	10 ³³	2.46	
Luminosity at top 1%		%	99.0	
Number of beamstrahlung	nγ		0.845	
Beamstrahlung energy loss	δ_{BS}	%	0.158	

Luminosity Spectrum (e⁻,e⁺) ²⁰¹⁹⁰⁶⁰⁴⁽⁰¹⁴⁴⁴⁴⁾ CAIN2.44

Luminosity Spectrum (e⁻,e⁺)


Total luminosity 2.506± 0.001(stat.10) plotted range 2.508 ×10³⁹/cm⁶/s 2019 Zpole TCMB, Yokoya

Brief Explanation of Luminosity Increase since LCWS2016

- The range 1-1.5 x 10^{33} given in LCWS2016 came from L~ either E² or E^{3/2}
- Upper limit comes from the beam angle in x, the lower limit in both x & y. The former is the reality.
- If apply the luminosity improvement in AWLC2017 by factor 1.35/0.82=1.65, L=2.47 x 10³³
- The lower ε_{nx}^* could give some more increase (~3 x 10^{33}) but it is cancelled by 5 \rightarrow 3.7Hz
- Another complication is the momentum band width under large energy spread. This is (partly) cured by the longer bunch. The side effects (larger wake) must be checked.

Next Steps

- First step: confirm the present results
 - Damping ring dynamic aperture
 - Linac simulation for 45.6GeV beam in 125GeV linac with increased bunch length
 - BDS momentum band width and collimation depth
 - Note ϵ_{nx}^* = 6.2nm with β_x^* = 18mm will cause collimation depth < $6\sigma_x$
 - Also, 2625 bunches. Any problem (except positron production)?
- Second: possible drastic improvements, if needed
 - Better design of DR
 - smaller ϵ_{nx} , smaller longitudinal emittance (shorter bunch)
 - Tighter focusing (as is being considered in circular colliders)
 - Better design of BDS
 - Final quads with larger aperture (not vert much drastic)
 - Larger momentum band width with a drastic change of the lattice ????
- Third: ILC@500
 - Nick's idea

19

Figure 2: "Giga Z" configuration for polarised positron production.

Summary

- The previous report (LCWS2016@Morioka) suggested the expectation L=(1-1.5)x10³³ /cm²/s at Z-pole in 5+5Hz operation of ILC500
- ILC250 (shorter linac) is
 - worse in power : up to 3.7+3.7Hz operation
 - but better in the beam dynamics
- The previous luminosity improvement for ILC250 by smaller horizontal emittance (AWLC2017@SLAC) brings about significant effects for Z-pole operation
- Expected luminosity is now L ~ 2.46 x 10³³ /cm²/s, though preliminary
- This must be confirmed by more detailed simulations
- If you want higher luminosity, the bottle neck is the momentum band width of BDS under the large energy spread of the low energy beam