EWPOs using radiative return

- motivation
- A_{LR} (electron)
- $A_f (f=b/c/\mu/\tau)$
- R_f
- g_L & g_R

Junping Tian (U. Tokyo)

task force: K.Fujii, D.Jeans, M.Kurata, T.Suehara, J.Tian, H.Yamamoto

recap 1: Higgs couplings are related to EW couplings (EWPOs)

$$i\frac{c_{HL}}{v^2}(\Phi^{\dagger}\overleftrightarrow{D}^{\mu}\Phi)(\overline{L}\gamma_{\mu}L) \qquad 4i\frac{c_{HL}'}{v^2}(\Phi^{\dagger}t^a\overleftrightarrow{D}^{\mu}\Phi)(\overline{L}\gamma_{\mu}t^aL) \qquad i\frac{c_{HE}}{v^2}(\Phi^{\dagger}\overleftrightarrow{D}^{\mu}\Phi)(\overline{e}\gamma_{\mu}e)$$

 contact interactions from c_{HL}/c_{HL}'/c_{HE} in Higgs processes can be constrained by EWPOs at Z-pole: *A_{LR}*, *Г*₁

a gift from ISR: radiative return @ ILC250

- ISR is mostly collinear
- asymmetric collision at Z-pole
- ISR (QED) retains initial e-/e+ chirality

of radiative return events @ ILC250

ILC250	(-0.8,+0.3)	(+0.8,-0.3)
hadronic	46M	31M
leptonic	7.2M	4.9M
combined	54M	36M

- ~10⁸ events at ILC250 with 2 ab⁻¹
- > 5 (100) times than all Z at LEP (SLC)
- and now all with beam polarizations
- potentially much better **A**_f and **R**_f measurements

study of e+e- -> γZ @ ILC250

- reconstruction method from LEP 2: Z mass can be determined by only directions of two fermions
- shortly after our SMEFT studies in 2017, I proposed to use this process at ILC250 for improving A_{LR} (T.Barklow@AWLC17)
- SiD performed a fast simulation (T.Ueno@LCWS18)
- ILD full simulation ongoing (T.Mizuno)
- following are some expectations

inputs and assumptions for A_f and R_f

	efficiency	systematics
Z->hadrons	73%[1]	0
Z->µµ/ee	88%[2]	0
Z->τ τ (Rf)	80%[3]	0.1%
Z->τ τ (Af)	80%[3]	0
Z->bb (Rf)	73% x 80% ^[4]	0.1%
Z->bb (Af)	73% x 40% ^[4]	0
Z-> cc (Rf)	73% x 30% ^[4]	0.5%
Z-> cc (Af)	73% x 10% ^[4]	0

[1] Takayuki Ueno, Master Thesis

[2] T.Suehara et al; [3] D.Jeans; [4] R.Poeschl et al

result: A_{LR} using e+e- -> γZ (A_e)

$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = A_e \qquad \qquad \Delta A_e = \frac{1}{\sqrt{N}} \sqrt{K^2 - A_e^2}$$
$$K = \frac{1 + |P_{e^-}P_{e^+}|}{|P_{e^-}| + |P_{e^+}|} \qquad \text{N: \# of sig. events}$$

 to measure: cross sections for (-0.8,+0.3) and (+0.8,-0.3), using all hadronic and leptonic channels

ILC250	NL	N _R	ΔA _{LR}
hadronic	46M	31M	0.00015
leptonic	7.2M	4.9M	0.00035
combined	54M	36M	0.00014

 main systematics would be uncertainty of K factor (effective polarization), which would be determined using WW data -> c.f. R.Karl's thesis, and further study would be needed

result: A_{LR} using e+e- -> γZ (A_f, f= $\mu/\tau/b/c$)

$$A_{LRFB} = \frac{\sigma_{LF} - \sigma_{LB} - \sigma_{RF} + \sigma_{RB}}{\sigma_{LF} + \sigma_{LB} + \sigma_{RF} + \sigma_{RB}} = \frac{3}{4}A_f \qquad \Delta A_f = \frac{1}{\sqrt{N}}\sqrt{\frac{16}{9}K^2 - A_f^2}$$

• to measure: + cross sections in the forward/backward regions

	ΔAb	ΔAc	ΔΑμ	ΔΑτ
ILC250	0.00053	0.0014	0.00080	0.00083

 systematics: + uncertainties from charge identification, momentum directions -> c.f. study by Adrain for bb/cc, need further study here due to the boost of Z (more forward jets); also need to study tau channel the about the momentum directions

result: BR(Z->ff) using e+e- -> γZ (R_f, f= $\mu/\tau/b/c$)

$$R_{b/c} = \frac{\Gamma(Z \to b\bar{b}/c\bar{c})}{\sum_{q} \Gamma(Z \to q\bar{q})} \qquad \qquad R_{\mu/\tau} = \frac{\sum_{q} \Gamma(Z \to q\bar{q})}{\Gamma(Z \to \mu^{+}\mu^{-}/\tau^{+}\tau^{-})}$$

• to measure: σxBR, relative simple

	ΔRb	ΔRc	ΔRμ	ΔRτ	ΔRe
ILC250	0.00023	0.00087	0.011	0.024	0.024

• systematics: uncertainty on various efficiencies

result: Zff couplings (gL/gR) using e+e- -> γZ

$$\delta g_L = \frac{A_f}{2(A_f + 1)} \delta A_f \oplus \frac{1}{2} \delta R_f \oplus \frac{1}{2} \delta \Gamma_{had}$$

$$\delta g_R = \frac{A_f}{2(A_f - 1)} \delta A_f \oplus \frac{1}{2} \delta R_f \oplus \frac{1}{2} \delta \Gamma_{had}$$

note the large factor for b_R coupling

result: EWPOs from $e+e- -> \gamma Z$

Quantity	Value	current	GigaZ		$250 { m GeV}$	
		$\delta[10^{-4}]$	$\delta_{stat}[10^{-4}]$	$\delta_{sys}[10^{-4}]$	$\delta_{stat}[10^{-4}]$	$\delta_{sys}[10^{-4}]$
boson properties						
m_W	80.379	1.5	-	-		0.3 °
m_Z	91.1876	0.23	-	-	-	-
Γ_Z	2.4952	9.4		3.2	-	-
$\Gamma_Z(had)$	1.7444	11.5		3.2	-	-
Z-e couplings						
$1/R_e$	0.0482	24.	2.	4 †	5.5	10 +
A_e	0.1515	139.	0.1	5 *	9.5	3 *
g^e_L	-0.632	16.	1.	2.5	2.8	7.6
g^e_R	0.551	18.	1.	2.5	2.9	7.6
$Z-\ell$ couplings						
$1/R_{\mu}$	0.0482	16.	2.	2. †	5.5	10 +
$1/R_{ au}$	0.0482	22.	2.	4. †	5.7	10 +
A_{μ}	0.1515	991.	2.	5 *	54.	3 *
$A_{ au}$	0.1515	271.	2.	5 *	57.	3 *
g^{μ}_{L}	-0.632	66.	1.	1.8	4.5	7.6
g^{μ}_R	0.551	89.	1.	1.9	5.5	7.6
$g_L^{ au}$	-0.632	22.	1.	2.5	4.7	7.6
$g_R^{ au}$	0.551	27.	1.	2.5	5.8	7.6
Z- b couplings						
R_b	0.2163	31.	0.4	7. #	3.5	10 +
A_b	0.935	214.	1.	5. *	5.7	3 *
$egin{array}{c} A_b \ g^b_L \end{array}$	-0.999	54.	0.31	4.0	2.2	7.6
g^b_R	0.184	1540	7.2	36.	41.	23.
$\overline{Z-c}$ couplings						
R_c	0.1721	174.	2.	30 #,+	5.8	50 +
A_c	0.668	404.	3.	6. *	21.	3 *
g_L^c	0.816	119.	1.2	15.	5.1	26.
g_R^c	-0.367	415.	3.1	16.	21.	26.

LCC Physics WG

take-home message

if we work hard and be smart

ILC250 = ILC250 + 100xLEP/SLC

appendix

impact of EWPOs

experimental inputs and assumptions for section 1

	efficiency	systematics	cosθ	bin width
μμ	98% [1]	0.1%	[-0.95,0.95]	0.1
ττ	90% [2]	0.2%	[-0.95,0.95]	0.1
b b	29% ^[3]	0.2%	[-0.95,0.95]	0.1
сс	7%[3]	0.5%	[-0.95,0.95]	0.1
e e	97% [1]	0.1%	[-0.95,0.95]	0.1

flat acceptance function within the fiducial volume

b- and c-charge identification efficiency applied

analytic differential cross section, w/o effects from beamstrahlung and ISR [1] T.Suehara; [2] D.Jeans; [3] R.Poeschl

computation for W and Y oblique parameters

(provided by M. Peskin & M. Perelstein)

$$\frac{d\sigma}{d\cos\theta} (e_L^- e_R^+ \to f_L \overline{f}_R) = \frac{\pi\alpha^2}{2s} \left| F_{LL} \right|^2 (1 + \cos\theta)^2$$
$$\frac{d\sigma}{d\cos\theta} (e_L^- e_R^+ \to f_R \overline{f}_L) = \frac{\pi\alpha^2}{2s} \left| F_{LR} \right|^2 (1 - \cos\theta)^2$$
$$\frac{d\sigma}{d\cos\theta} (e_R^- e_L^+ \to f_L \overline{f}_R) = \frac{\pi\alpha^2}{2s} \left| F_{RL} \right|^2 (1 - \cos\theta)^2$$
$$\frac{d\sigma}{d\cos\theta} (e_R^- e_L^+ \to f_R \overline{f}_L) = \frac{\pi\alpha^2}{2s} \left| F_{RR} \right|^2 (1 + \cos\theta)^2$$

$$\begin{split} F_{LL}(s) &= -\left[Q_f + \frac{\left(\frac{1}{2} - s_w^2\right)(I_f^3 - s_w^2 Q_f)}{s_w^2 c_w^2} \frac{s}{(s - m_Z^2)} - \frac{\frac{1}{2} I_f^3}{s_w^2} \frac{s}{m_W^2} \mathbf{W} - \frac{\frac{1}{2} Y_f}{c_w^2} \frac{s}{m_W^2} \mathbf{Y}\right] \\ F_{LR}(s) &= -\left[Q_f + \frac{\left(\frac{1}{2} - s_w^2\right)(-s_w^2 Q_f)}{s_w^2 c_w^2} \frac{s}{(s - m_Z^2)} - \frac{\frac{1}{2} Q_f}{c_w^2} \frac{s}{m_W^2} \mathbf{Y}\right] \\ F_{RL}(s) &= -\left[Q_f + \frac{(-s_w^2)(I_f^3 - s_w^2 Q_f)}{s_w^2 c_w^2} \frac{s}{(s - m_Z^2)} - \frac{Y_f}{c_w^2} \frac{s}{m_W^2} \mathbf{Y}\right] \\ F_{RR}(s) &= -\left[Q_f + \frac{(-s_w^2)(-s_w^2 Q_f)}{s_w^2 c_w^2} \frac{s}{(s - m_Z^2)} - \frac{Q_f}{c_w^2} \frac{s}{m_W^2} \mathbf{Y}\right] \end{split}$$

composite models

	η_{LL}	η_{RR}	η_{LR}	η_{RL}
Λ^+_{LL}	1	0	0	0
Λ^{-}_{LL}	-1	0	0	0
Λ^+_{RR}	0	1	0	0
Λ^{RR}	0	-1	0	0
Λ^+_{VV}	1	1	1	1
Λ^{-}_{VV}	-1	-1	-1	-1
Λ^+_{AA}	1	1	-1	-1
Λ^{AA}	-1	-1	1	1
$\Lambda^+_{(V-A)}$	0	0	1	1
$\Lambda^{-}_{(V-A)}$	0	0	-1	-1

$$\begin{aligned} \mathcal{L}_{LL} &= \frac{g_{\text{contact}}^2}{2\Lambda^2} \sum_{i,j} \eta_{LL}^{ij} (\bar{\psi}_L^i \gamma_\mu \psi_L^i) (\bar{\psi}_L^j \gamma^\mu \psi_L^j), \\ \mathcal{L}_{RR} &= \frac{g_{\text{contact}}^2}{2\Lambda^2} \sum_{i,j} \eta_{RR}^{ij} (\bar{\psi}_R^i \gamma_\mu \psi_R^i) (\bar{\psi}_R^j \gamma^\mu \psi_R^j), \\ \mathcal{L}_{LR} &= \frac{g_{\text{contact}}^2}{2\Lambda^2} \sum_{i,j} \eta_{LR}^{ij} (\bar{\psi}_L^i \gamma_\mu \psi_L^i) (\bar{\psi}_R^j \gamma^\mu \psi_R^j), \\ \mathcal{L}_{RL} &= \frac{g_{\text{contact}}^2}{2\Lambda^2} \sum_{i,j} \eta_{RL}^{ij} (\bar{\psi}_R^i \gamma_\mu \psi_R^i) (\bar{\psi}_L^j \gamma^\mu \psi_L^j), \end{aligned}$$

Tanabashi, et al, PRD 98 (2018) 030001

Section 112