EWPOs using radiative return

- motivation
- AlR $_{\text {(electron) }}$
- $A_{f}(f=b / c / \mu / \tau)$
- R_{f}
- $g_{L} \& g_{R}$

Junping Tian (U. Tokyo)

task force: K.Fujii, D.Jeans, M.Kurata, T.Suehara, J.Tian, H.Yamamoto
recap 1: Higgs couplings are related to EW couplings (EWPOs)

$$
4 i \frac{c_{H L}^{\prime}}{v^{2}}\left(\Phi^{\dagger} t^{a} \overleftrightarrow{D}{ }^{\mu} \Phi\right)\left(\bar{L} \gamma_{\mu} t^{a} L\right)
$$

$$
i \frac{c_{H E}}{v^{2}}\left(\Phi^{\dagger} \overleftrightarrow{D}^{\mu} \Phi\right)\left(\bar{e} \gamma_{\mu} e\right)
$$

$e^{+} e^{-}->Z h h$

$\mathrm{e}^{+} \mathrm{e}^{-}->$Zh

Z-pole

- contact interactions from снн/снц'/сне in Higgs processes can be constrained by EWPOs at Z-pole: $\boldsymbol{A}_{L R}, \boldsymbol{\Gamma}_{\boldsymbol{I}}$

a gift from ISR: radiative return @ ILC250

- ISR is mostly collinear
- asymmetric collision at Z-pole
- ISR (QED) retains initial e-/e+ chirality

\# of radiative return events @ ILC250

- ~108 events at ILC250 with $2 \mathrm{ab}^{-1}$
- > 5 (100) times than all Z at LEP (SLC)
- and now all with beam polarizations
- potentially much better $\boldsymbol{A}_{\boldsymbol{f}}$ and $\boldsymbol{R}_{\boldsymbol{f}}$ measurements

study of e+e- -> $\mathrm{y} Z$ @ ILC250

- reconstruction method from LEP 2: Z mass can be determined by only directions of two fermions
- shortly after our SMEFT studies in 2017, I proposed to use this process at ILC250 for improving ALR (T.Barklow@AWLC17)
- SiD performed a fast simulation (T.Ueno@LCWS18)
- ILD full simulation ongoing (T.Mizuno)
- following are some expectations

inputs and assumptions for A_{f} and R_{f}

	efficiency	systematics
Z->hadrons	$73 \%{ }^{[1]}$	0
Z-> $\mu \mu / \mathrm{ee}$	88\% ${ }^{[2]}$	0
Z-> T T (Rf)	80\% ${ }^{[3]}$	0.1\%
Z->t τ (Af)	80\% ${ }^{[3]}$	0
Z->bb (Rf)	$73 \% \times 80 \%{ }^{[4]}$	0.1\%
Z->bb (Af)	73\% $\times 40 \%{ }^{[4]}$	0
Z-> cc (Rf)	$73 \% \times 30 \%{ }^{[4]}$	0.5\%
Z-> cc (Af)	$73 \% \times 10 \%{ }^{[4]}$	0

[1] Takayuki Ueno, Master Thesis
[2] T.Suehara et al; [3] D.Jeans; [4] R.Poeschl et al

result: $A_{\text {LR }}$ using e+e- -> $\gamma Z\left(A_{e}\right)$

$$
\begin{aligned}
A_{L R}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}=A_{e} \quad & \Delta A_{e}=\frac{1}{\sqrt{N}} \sqrt{K^{2}-A_{e}^{2}} \\
& K=\frac{1+\left|P_{e^{-}} P_{e^{+}}\right|}{\left|P_{e^{-}}\right|+\left|P_{e^{+}}\right|} \quad \mathrm{N}: \text { \# of sig. events }
\end{aligned}
$$

- to measure: cross sections for ($-0.8,+0.3$) and (+0.8,-0.3), using all hadronic and leptonic channels

ILC250	N_{L}	N_{R}	$\Delta \mathrm{A}_{\mathrm{LR}}$
hadronic	46 M	31 M	0.00015
leptonic	7.2 M	4.9 M	0.00035
combined	54 M	36 M	0.00014

- main systematics would be uncertainty of K factor (effective polarization), which would be determined using WW data -> c.f. R.Karl's thesis, and further study would be needed

result: $A_{L R}$ using e+e- -> $\gamma Z\left(A_{f}, f=\mu / \tau / b / c\right)$

$$
A_{L R F B}=\frac{\sigma_{L F}-\sigma_{L B}-\sigma_{R F}+\sigma_{R B}}{\sigma_{L F}+\sigma_{L B}+\sigma_{R F}+\sigma_{R B}}=\frac{3}{4} A_{f} \quad \Delta A_{f}=\frac{1}{\sqrt{N}} \sqrt{\frac{16}{9} K^{2}-A_{f}^{2}}
$$

- to measure: + cross sections in the forward/backward regions

	$\Delta \mathrm{Ab}$	$\Delta \mathrm{Ac}$	$\Delta \mathrm{A} \mu$	$\Delta \mathrm{AT}$
ILC250	0.00053	0.0014	0.00080	0.00083

- systematics: + uncertainties from charge identification, momentum directions -> c.f. study by Adrain for bb/cc, need further study here due to the boost of Z (more forward jets); also need to study tau channel the about the momentum directions

result: BR(Z->ff) using e+e- -> $\gamma Z\left(R_{f}, f=\mu / \tau / b / c\right)$

$$
R_{b / c}=\frac{\Gamma(Z \rightarrow b \bar{b} / c \bar{c})}{\sum_{q} \Gamma(Z \rightarrow q \bar{q})} \quad R_{\mu / \tau}=\frac{\sum_{q} \Gamma(Z \rightarrow q \bar{q})}{\Gamma\left(Z \rightarrow \mu^{+} \mu^{-} / \tau^{+} \tau^{-}\right)}
$$

- to measure: $\sigma x B R$, relative simple

	$\Delta R b$	$\Delta R c$	$\Delta R \mu$	$\Delta R \tau$	$\Delta R e$
ILC250	0.00023	0.00087	0.011	0.024	0.024

- systematics: uncertainty on various efficiencies

result: Zff couplings (gL/gR) using e+e--> $\mathrm{Y} Z$

$$
\begin{gathered}
\delta g_{L}=\frac{A_{f}}{2\left(A_{f}+1\right)} \delta A_{f} \oplus \frac{1}{2} \delta R_{f} \oplus \frac{1}{2} \delta \Gamma_{\text {had }} \\
\delta g_{R}=\frac{A_{f}}{2\left(A_{f}-1\right)} \delta A_{f} \oplus \frac{1}{2} \delta R_{f} \oplus \frac{1}{2} \delta \Gamma_{\text {had }} \\
\uparrow
\end{gathered}
$$

note the large factor for b_{R} coupling
result: EWPOs from e+e--> γZ

Quantity	Value	$\begin{gathered} \text { current } \\ \delta\left[10^{-4}\right] \\ \hline \end{gathered}$	$\begin{gathered} \text { GigaZ } \\ \delta_{\text {stat }}\left[10^{-4}\right] \end{gathered}$	$\delta_{\text {sys }}\left[10^{-4}\right]$	$\begin{gathered} 250 \mathrm{GeV} \\ \delta_{\text {stat }}\left[10^{-4}\right] \end{gathered}$	$\delta_{\text {sys }}\left[10^{-4}\right]$
boson properties						
m_{W}	80.379	1.5	-	-		$0.3{ }^{\circ}$
m_{Z}	91.1876	0.23	-	-	-	-
Γ_{Z}	2.4952	9.4		3.2	-	-
$\Gamma_{Z}($ had $)$	1.7444	11.5		3.2	-	-
Z-e couplings						
$1 / R_{e}$	0.0482	24.	2.	4^{\dagger}	5.5	10^{+}
A_{e}	0.1515	139.	0.1	5 *	9.5	3 *
g_{L}^{e}	-0.632	16.	1.	2.5	2.8	7.6
g_{R}^{e}	0.551	18.	1.	2.5	2.9	7.6
$Z-\ell$ couplings						
$1 / R_{\mu}$	0.0482	16.	2.	2. ${ }^{\dagger}$	5.5	10^{+}
$1 / R_{\tau}$	0.0482	22.	2.	4. ${ }^{\dagger}$	5.7	10 +
A_{μ}	0.1515	991.	2.	5 *	54.	3 *
A_{τ}	0.1515	271.	2.	5 *	57.	3 *
g_{L}^{μ}	-0.632	66.	1.	1.8	4.5	7.6
g_{R}^{μ}	0.551	89.	1.	1.9	5.5	7.6
g_{L}^{τ}	-0.632	22.	1.	2.5	4.7	7.6
g_{R}^{τ}	0.551	27.	1.	2.5	5.8	7.6
$Z-b$ couplings						
R_{b}	0.2163	31.	0.4	7. \#	3.5	$10{ }^{+}$
A_{b}	0.935	214.	1.	5. *	5.7	3 *
$g_{L_{1}}^{b}$	-0.999	54.	0.31	4.0	2.2	7.6
g_{R}^{b}	0.184	1540	7.2	36.	41.	23.
$Z-c$ couplings						
R_{c}	0.1721	174.	2.	$30^{\#,+}$	5.8	50 +
A_{c}	0.668	404.	3.	6. *	21.	3 *
g_{L}^{c}	0.816	119.	1.2	15.	5.1	26.
g_{R}^{c}	-0.367	415.	3.1	16.	21.	26.

LCC Physics WG

take-home message

if we work hard and be smart

ILC250 $=$ ILC250 $+100 \times$ LEP/SLC

appendix

impact of EWPOs

experimental inputs and assumptions for section 1

	efficiency	systematics	$\cos \theta$	bin width
$\mu \mu$	$98 \%{ }^{[1]}$	0.1%	$[-0.95,0.95]$	0.1
T T	$90 \%{ }^{[2]}$	0.2%	$[-0.95,0.95]$	0.1
b b	$29 \%\left[^{[3]}\right.$	0.2%	$[-0.95,0.95]$	0.1
c c	$7 \%{ }^{[3]}$	0.5%	$[-0.95,0.95]$	0.1
e e	$97 \%{ }^{[1]}$	0.1%	$[-0.95,0.95]$	0.1

flat acceptance function within the fiducial volume
b- and c-charge identification efficiency applied
analytic differential cross section, w/o effects from beamstrahlung and ISR
[1] T.Suehara; [2] D.Jeans; [3] R.Poeschl

computation for W and Y oblique parameters

(provided by M. Peskin \& M. Perelstein)

$$
\begin{aligned}
& \frac{d \sigma}{d \cos \theta}\left(e_{L}^{-} e_{R}^{+} \rightarrow f_{L} \bar{f}_{R}\right)=\frac{\pi \alpha^{2}}{2 s}\left|F_{L L}\right|^{2}(1+\cos \theta)^{2} \\
& \frac{d \sigma}{d \cos \theta}\left(e_{L}^{-} e_{R}^{+} \rightarrow f_{R} \bar{f}_{L}\right)=\frac{\pi \alpha^{2}}{2 s}\left|F_{L R}\right|^{2}(1-\cos \theta)^{2} \\
& \frac{d \sigma}{d \cos \theta}\left(e_{R}^{-} e_{L}^{+} \rightarrow f_{L} \bar{f}_{R}\right)=\frac{\pi \alpha^{2}}{2 s}\left|F_{R L}\right|^{2}(1-\cos \theta)^{2} \\
& \frac{d \sigma}{d \cos \theta}\left(e_{R}^{-} e_{L}^{+} \rightarrow f_{R} \bar{f}_{L}\right)=\frac{\pi \alpha^{2}}{2 s}\left|F_{R R}\right|^{2}(1+\cos \theta)^{2} \\
& F_{L L}(s)=-\left[Q_{f}+\frac{\left(\frac{1}{2}-s_{w}^{2}\right)\left(I_{f}^{3}-s_{w}^{2} Q_{f}\right)}{s_{w}^{2} c_{w}^{2}} \frac{s}{\left(s-m_{Z}^{2}\right)}-\frac{\frac{1}{2} I_{f}^{3}}{s_{w}^{2}} \frac{s}{m_{W}^{2}} \mathbf{W}-\frac{\frac{1}{2} Y_{f}}{c_{w}^{2}} \frac{s}{m_{W}^{2}} \mathbf{Y}\right] \\
& F_{L R}(s)=-\left[Q_{f}+\frac{\left(\frac{1}{2}-s_{w}^{2}\right)\left(-s_{w}^{2} Q_{f}\right)}{s_{w}^{2} c_{w}^{2}} \frac{s}{\left(s-m_{Z}^{2}\right)}-\frac{\frac{1}{2} Q_{f}}{c_{w}^{2}} \frac{s}{m_{W}^{2}} \mathbf{Y}\right] \\
& F_{R L}(s)=-\left[Q_{f}+\frac{\left(-s_{w}^{2}\right)\left(I_{f}^{3}-s_{w}^{2} Q_{f}\right)}{s_{w}^{2} c_{w}^{2}} \frac{s}{\left(s-m_{Z}^{2}\right)}-\frac{Y_{f}}{c_{w}^{2}} \frac{s}{m_{W}^{2}} \mathbf{Y}\right] \\
& F_{R R}(s)=-\left[Q_{f}+\frac{\left(-s_{w}^{2}\right)\left(-s_{w}^{2} Q_{f}\right)}{s_{w}^{2} c_{w}^{2}} \frac{s}{\left(s-m_{Z}^{2}\right)}-\frac{Q_{f}}{c_{w}^{2}} \frac{s}{m_{W}^{2}} \mathbf{Y}\right]
\end{aligned}
$$

composite models

	$\eta_{L L}$	$\eta_{R R}$	$\eta_{L R}$	$\eta_{R L}$	
$\Lambda_{L L}^{+}$	1	0	0	0	
$\Lambda_{L L}^{-}$	-1	0	0	0	$\mathcal{L}_{L L}=\frac{g_{\text {contact }}^{2}}{2 \Lambda^{2}} \sum_{i, j} \eta_{L L}^{i j}\left(\bar{\psi}_{L}^{i} \gamma_{\mu} \psi_{L}^{i}\right)\left(\bar{\psi}_{L}^{j} \gamma^{\mu} \psi_{L}^{j}\right),$
$\Lambda_{R R}^{+}$	0	1	0	0	$\mathcal{L}_{R R}=\frac{g_{\text {contact }}^{2}}{2 \Lambda^{2}} \sum \eta_{R R}^{i j}\left(\bar{\psi}_{R}^{i} \gamma_{\mu} \psi_{R}^{i}\right)\left(\bar{\psi}_{R}^{j} \gamma^{\mu} \psi_{R}^{j}\right)$,
$\Lambda_{R R}^{-}$	0	-1	0	0	
$\Lambda_{V V}^{+}$	1	1	1	1	$R=\frac{2 \Lambda^{2}}{2 \Lambda_{i, j}} \sum_{L R}\left(\psi_{L}^{\ell} \gamma_{\mu} \psi_{L}^{t}\right)\left(\psi_{R}^{\prime} \gamma^{\mu} \psi_{R}^{j}\right),$
$\Lambda_{V V}^{-}$	-1	-1	-1	-1	$\mathcal{L}_{R L}=\frac{g_{\text {contact }}^{2}}{2 \Lambda^{2}} \sum_{i, j} \eta_{R L}^{i j}\left(\bar{\psi}_{R}^{i} \gamma_{\mu} \psi_{R}^{i}\right)\left(\bar{\psi}_{L}^{j} \gamma^{\mu} \psi_{L}^{j}\right),$
$\Lambda_{A A}^{+}$	1	1	-1	-1	
$\Lambda_{A A}^{-}$	-1	-1	1	1	Tanabashi, et al,
$\Lambda_{(V-A)}^{+}$	0	0	1	1	PRD 98 (2018) 030001
$\Lambda_{(V-A)}^{-}$	0	0	-1	-1	

