

3.9.2019

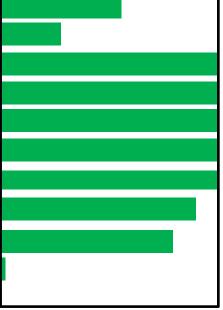
IDR STATUS

IDR Status/ Schedule

Significant progress in finalising the document:

- Version sent to ILD on July 6, comments received and implemented
- Editing days at DESY last week
- Version now is nearly complete, with very few exceptions,
- Polishing is ongoing

Plan:


- Send each chapter to ILD internal reviewers first half of September
- Circulare the complete document to ILD early in October
- In parallel send the complete document to a (small) number of external reviewers for overall review early October
- Discuss a close to final version at LCWS on November 1.

IDR Structure

- 1. Introduction
- 2. Science with ILD
- 3. The ILC Environment
- 4. The ILD Detector Concept
- 5. Detector Layout and Technologies
- 6. ILD Global Integration
- 7. Physics and Detecor Modelling
- 8. Detector and Physics Performance
- 9. Costing
- 10. Summary

ILD definition

Updated table of dimensions for ILD

L and S in one table

Barrel system						
System	$r_{ m in}$	$r_{ m out}$ [mm]	$z_{\rm max}$	technology	comments	
VTX	16	60	125	silicon pixel sensors	3 double layers at $\sigma_{r\phi,z}=$ 3.0 $\mu \mathrm{m}$ $\sigma_t=$ 2-4 μs	$r_0=$ 16, 37, 58 mm (layers 1-6)
SIT	153	303	644	silicon pixel sensors	2 double layers at $\sigma_{r\phi,z}=$ 5.0 $\mu \mathrm{m}$ $\sigma_t=$ 0.5-1 μs	r= 155, 301 mm (layers 1-4)
TPC	329	1770 1427°	2350	MPGD readout	$\begin{array}{c} \text{220 layers} \\ 1 \times 6 \text{ mm}^2 \text{ pads} \end{array}$	$\sigma_{r\phi} pprox$ 60-100 μm
SET	1773 1430°	1776 1433°	2300	silicon strip sensors	1 double layer at $\sigma_{r\phi}=$ 7.0 $\mu \mathrm{m}$	$r=$ 1774 mm $\phi_{ m stereo}=$ 7 $^{\circ}$
ECAL	1805 <i>1462</i> °	2028 1685°	2350	W absorber	30 layers	
				silicon sensor scintilator sensor	$5 imes 5~\mathrm{mm}^2~\mathrm{cells}$ $5 imes 45~\mathrm{mm}^2~\mathrm{strips}$	SiECAL ScECAL
HCAL	2058 <i>1715</i> °	3345 <i>3002</i> ^s	2350	Fe absorber	48 layers	
	1713	3002		scintilator sensor, analogue	$3\times 3~\mathrm{cm}^2~\mathrm{cells}$	AHCAL
				RPC gas sensor, semi-digital	$1\times 1~\mathrm{cm}^2~\mathrm{cells}$	SDHCAL
Coil	3425 3082°	4175 3832°	3872		3.5 T field	$int.lengths = 2\lambda$
Muon	4450 4107°	7755 7412°	4047	scintillator sensor	14 layers $3 \times 3 \text{ cm}^2$ cells	

IDR on overleaf

https://www.overleaf.com/project/5b30eafb30cd6f754b3f3fc5

The document is visible under the address above.

If you have further comments please sent them to ild-et@desy.de

Costing

Large (top)

and small (bottom)

Modell

All numbers are very preliminary!

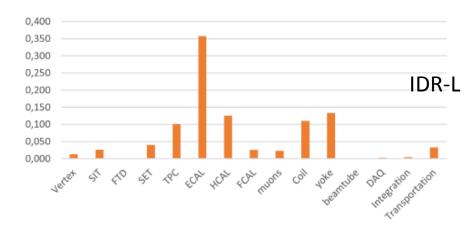
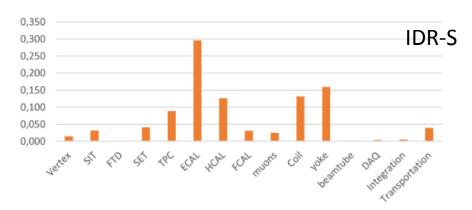
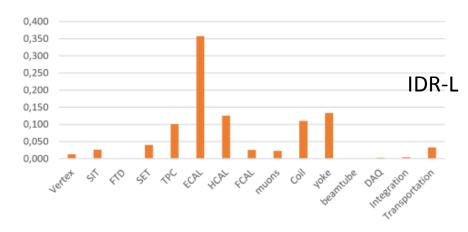



Figure 9.3. ILD cost sharing in the large model. Empty FTD to be corrected.

Costing


Large (top)


and DBD (bottom)

Modell

All numbers are very preliminary!

Figure

Summary

- Great progress on the document since early summer
- We are getting there: the document is nearly complete
- Significant amount of new information contained in the document:
 well worth the effort
- Some parts need final touches and additional effort
 - Costing: inputs are still needed and would be very helpful!