

Introduction

Electroweak observables provide

- a crucial stress test of the SM
- important input to SMEFT fit
 => Higgs property determination
- BSM sensitivity!

Received a lot of attention during European Strategy process, eg at Open Symposium in Granada

Required: a lot of Z's

Talk based on arXiv:1908.11299

Introduction

Electroweak observables provide

- a crucial stress test of the SM
- important input to SMEFT fit
 => Higgs property determination
- BSM sensitivity!

Received a lot of attention during European Strategy process, eg at Open Symposium in Granada

Required: a lot of Z's

Talk based on arXiv:1908.11299

ILC running modes - and Z production

Accelerator implementation -

arXiv:1908.08212

ILC e⁺e⁻ collider

- first stage: 250 GeV
- GigaZ & WW threshold possible
- upgrades: 500 GeV, 1 TeV

polarised beams

- $P(e^{-}) \ge \pm 80\%$,
- $P(e^+) = \pm 30\%$, at 500 GeV upgradable to 60%

Since 2015 arXiv:1506.07830					
√s	∫ℒdt				
250 GeV	2 ab-1				
350 GeV	0.2 ab ⁻¹				
500 GeV	4 ab-1				
1 TeV	8 ab-1				
91 GeV	0.1 ab ⁻¹				
161 GeV	0.5 ab ⁻¹				

(radiative) Z's in 2 ab-1 at **250 GeV**:

- $\sim 77 \cdot 10^6 \, \text{Z->qq}$
- $\sim 12 \ 10^6 \ Z -> \parallel$

=> substantial increase over LEP,and polarised!

Z's in 0.1ab-1 at **91 GeV**:

- ~3.4 10**9** Z->qq
- $\sim 0.5 \ 10^9 \ Z -> \parallel$
- ~1-2 years of running (after lumi upgrade)

The ILD Concept

From key requirements from physics:

- pt resolution (total ZH x-section) $\sigma(1/p_t) = 2 \times 10^{-5} \text{ GeV}^{-1} \oplus 1 \times 10^{-3} / (p_t \sin^{1/2}\theta)$
- · vertexing (H → bb/cc/тт) $\sigma(d_0) < 5 \oplus 10 / (p[GeV] \sin^{3/2}\theta) \mu m$

≈ CMS / 4

- · jet energy resolution (H \rightarrow invisible) 3-4% \approx ATLAS / 2
- hermeticity (H \rightarrow invis, BSM) θ_{min} = 5 mrad \approx ATLAS / 3

To key features of the detector:

- low mass tracker:
 - main device: Time Projection Chamber (dE/dx!)
 - add. silicon: eg VTX: 0.15% rad. length / layer)
- high granularity calorimeters optimised for particle flow

The ILD Concept

From key requirements from physics:

- pt resolution (total ZH x-section) $\sigma(1/p_t) = 2 \times 10^{-5} \text{ GeV}^{-1} \oplus 1 \times 10^{-3} / (p_t \sin^{1/2}\theta)$
- vertexing (H \rightarrow bb/cc/TT) $\sigma(d_0) < 5 \oplus 10 / (p[GeV] \sin^{3/2}\theta) \mu m$

≈ CMS / 4

- · jet energy resolution (H \rightarrow invisible) 3-4% \approx ATLAS / 2
- hermeticity (H \rightarrow invis, BSM) θ_{min} = 5 mrad \approx ATLAS / 3

To key features of the detector:

- low mass tracker:
 - main device: Time Projection Chamber (dE/dx!)
 - add. silicon: eg VTX: 0.15% rad. length / layer)
- high granularity calorimeters optimised for particle flow

The ILD Concept

From key requirements from physics:

- pt resolution (total ZH x-section) $\sigma(1/p_t) = 2 \times 10^{-5} \text{ GeV}^{-1} \oplus 1 \times 10^{-3} / (p_t \sin^{1/2}\theta)$
- · vertexing $(H \rightarrow bb/cc/\tau\tau)$ $\sigma(d_0) < 5 \oplus 10 / (p[GeV] \sin^{3/2}\theta) \mu m$
- ≈ CMS / 4
- · jet energy resolution (H \rightarrow invisible) 3-4% \approx ATLAS / 2
- hermeticity (H \rightarrow invis, BSM) $\theta_{min} = 5 \text{ mrad} \approx ATLAS$

To key features of the detector:

- low mass tracker:
 - main device: Time Projection Chamber (dE/dx!).
 - add. silicon: eg VTX: 0.15% rad. length / layer)
- high granularity calorimeters optimised for particle flow

Possible since experimental environment at ILC very different from LHC:

- much lower backgrounds
- much less radiation
- much lower collision rate

enable

- power pulsing => low material budget!
- triggerless operation

Interludium: Precision W measurements

- Triple Gauge Couplings: few 10⁻⁴,
 1-2 orders of magnitude improvement over HL-LHC => input to SMEFT fit!
- W mass at 250 GeV several methods with very different systematic limitations
- W mass from threshold scan
 - with ~1 year dedicated running:

$$\Delta m_W({\rm MeV}) = 2.4~({\rm stat}) \oplus 3.1~({\rm syst}) \oplus 0.8~(\sqrt{\rm s}) \oplus {\rm theory}$$

- W branching ratios: simultaneous fit to all 10 σ_{tot} x BR for σ_{tot} and BR's (4 parameters)
- W width: $\Delta\Gamma_{W} = 3.2 \text{ MeV}$

Electroweak precision observables

 $g^{\gamma}L, g^{\gamma}R, g^{Z}L, g^{Z}R$

g_{Lf}, g_{Rf}: helicity-dependent couplings of Z to fermions

$$=> A_f = \frac{g_{Lf}^2 - g_{Rf}^2}{g_{Lf}^2 + g_{Rf}^2}$$

specifically for the electron:
$$A_e = \frac{(\frac{1}{2} - \sin^2 \theta_{eff})^2 - (\sin^2 \theta_{eff})^2}{(\frac{1}{2} - \sin^2 \theta_{eff})^2 + (\sin^2 \theta_{eff})^2} \approx 8(\frac{1}{4} - \sin^2 \theta_{eff})$$

at an *un*polarised collider:

$$A_{FB}^f \equiv \frac{(\sigma_F - \sigma_B)}{(\sigma_F + \sigma_B)} \; = \frac{3}{4} A_e A_f \quad \text{=> no direct access Ae,} \\ \text{only via tau polarisation}$$

$$A_e = A_{LR} \equiv rac{\sigma_L - \sigma_R}{(\sigma_L + \sigma_R)}$$
 and

$$A_e = A_{LR} \equiv \frac{\sigma_L - \sigma_R}{(\sigma_L + \sigma_R)} \quad \text{and} \quad A_{FB,LR}^f \equiv \frac{(\sigma_F - \sigma_B)_L - (\sigma_F - \sigma_B)_R}{(\sigma_F + \sigma_B)_L + (\sigma_F + \sigma_B)_R} = \frac{3}{4} A_f$$

Furthermore R_q and R_l:

$$R_q = \frac{\Gamma(Z \to q\overline{q})}{\Gamma(Z \to \text{hadrons})}$$
, $1/R_\ell = \frac{\Gamma(Z \to \ell^+ \ell^-)}{\Gamma(Z \to \text{hadrons})} \Longrightarrow R_q$, $1/R_\ell \propto (g_{Lf}^2 + g_{Rf}^2)$

Electroweak precision observables

gf_L, gf_R

g_{Lf}, g_{Rf}: helicity-dependent couplings of Z to fermions

$$=> A_f = \frac{g_{Lf}^2 - g_{Rf}^2}{g_{Lf}^2 + g_{Rf}^2}$$

specifically for the electron:
$$A_e = \frac{(\frac{1}{2} - \sin^2 \theta_{eff})^2 - (\sin^2 \theta_{eff})^2}{(\frac{1}{2} - \sin^2 \theta_{eff})^2 + (\sin^2 \theta_{eff})^2} \approx 8(\frac{1}{4} - \sin^2 \theta_{eff})$$

at an *un*polarised collider:

$$A_{FB}^f \equiv \frac{(\sigma_F - \sigma_B)}{(\sigma_F + \sigma_B)} \; = \frac{3}{4} A_e A_f \quad \text{=> no direct access Ae,} \\ \text{only via tau polarisation}$$

$$A_e = A_{LR} \equiv rac{\sigma_L - \sigma_R}{(\sigma_L + \sigma_R)}$$
 and

$$A_e = A_{LR} \equiv \frac{\sigma_L - \sigma_R}{(\sigma_L + \sigma_R)} \quad \text{and} \quad A_{FB,LR}^f \equiv \frac{(\sigma_F - \sigma_B)_L - (\sigma_F - \sigma_B)_R}{(\sigma_F + \sigma_B)_L + (\sigma_F + \sigma_B)_R} = \frac{3}{4} A_f$$

Furthermore R_q and R_l:

$$R_q = \frac{\Gamma(Z \to q\overline{q})}{\Gamma(Z \to \text{hadrons})}$$
, $1/R_\ell = \frac{\Gamma(Z \to \ell^+\ell^-)}{\Gamma(Z \to \text{hadrons})} \Longrightarrow R_q$, $1/R_\ell \propto (g_{Lf}^2 + g_{Rf}^2)$

Precision EW at 250 GeV from radiative return

• e+e- -> $Z \gamma$: Z boosted by $\beta \approx 0.76$

$$|\beta| = \frac{|E_1 \cos \theta_1 + E_2 \cos \theta_2|}{E_1 + E_2} = \frac{|\sin(\theta_1 + \theta_2)|}{\sin \theta_1 + \sin \theta_2}$$
 $m_{12}^2 = \frac{1 - |\beta|}{1 + |\beta|} \cdot s$

$$m_{12}^2 = \frac{1 - |\beta|}{1 + |\beta|} \cdot s$$

=> reconstruct from angles only!

- => clean sample with high efficiency
- Polarised beams: $A_e = A_{LR} \equiv \frac{\sigma_L \sigma_R}{(\sigma_L + \sigma_R)}$ => rel. stat.: $\delta A_e = 9.5 \times 10^{-4}$ lead. syst. from polarisation: 3×10^{-4}

factor 10 improvement over current value "for free"! => ~12% improvement on ghzz

Precision EW at 250 GeV from radiative return

• e+e- -> $Z \gamma$: Z boosted by $\beta \approx 0.76$

$$|\beta| = \frac{|E_1 \cos \theta_1 + E_2 \cos \theta_2|}{E_1 + E_2} = \frac{|\sin(\theta_1 + \theta_2)|}{\sin \theta_1 + \sin \theta_2} \qquad m_{12}^2 = \frac{1 - |\beta|}{1 + |\beta|} \cdot s$$

$$m_{12}^2 = \frac{1 - |\beta|}{1 + |\beta|} \cdot s$$

=> reconstruct from angles only!

- => clean sample with high efficiency
- Polarised beams: $A_e = A_{LR} \equiv \frac{\sigma_L \sigma_R}{(\sigma_L + \sigma_R)}$ => rel. stat.: $\delta A_e = 9.5 \times 10^{-4}$

lead. syst. from polarisation: 3×10^{-4}

P(e+) essential to reach this precision!

factor 10 improvement over current value "for free"! => ~12% improvement on ghzz

Precision EW at 250 GeV from radiative return

• e+e⁻ -> $Z \gamma$: Z boosted by $\beta \approx 0.76$

$$|\beta| = \frac{|E_1 \cos \theta_1 + E_2 \cos \theta_2|}{E_1 + E_2} = \frac{|\sin(\theta_1 + \theta_2)|}{\sin \theta_1 + \sin \theta_2}$$
 $m_{12}^2 = \frac{1 - |\beta|}{1 + |\beta|} \cdot s$

$$m_{12}^2 = \frac{1 - |\beta|}{1 + |\beta|} \cdot s$$

=> reconstruct from angles only!

- => clean sample with high efficiency
- Polarised beams: $A_e = A_{LR} \equiv \frac{\sigma_L \sigma_R}{(\sigma_L + \sigma_R)}$ => rel. stat.: $\delta A_e = 9.5 \times 10^{-4}$

lead. syst. from polarisation: 3×10^{-4}

P(e+) essential to reach this precision!

factor 10 improvement over current value "for free"! => ~12% improvement on ghzz

Important:

- Near \sqrt{s} =Mz, $A_{obs}=A_e+\Delta A$ has strong dependence on \sqrt{s} due to Z- γ interference => requires excellent knowledge of √s!
- At $\sqrt{s} = 250$ GeV, this dependence is at least 1000 x weaker => not an issue...

Precision EW at the GigaZ

- ~250 x LEP, with beam polarisation => expect at least factor 10 improvement
- Measure A_e via A_{LR} as before now crucial: knowledge of √s!
 - Exploit excellent momentum measurement of ILD (or SiD)
 - calibrate with J/ψ->μ+μ-
 - => obtain \sqrt{s} from $\mu^+\mu^-\gamma$ events to 1 MeV precision => $\delta A_e(\sqrt{s})=2 \times 10^{-5}$, comparable to stat. error.
 - => final number dominated by polarisation uncertainty
- Fermion asymmetries for μ / τ /c /b: new, detailed ILD studies in 2019 profit from
 - tiny ILC beam spot (@91.2 GeV): 1.12 μm x 14.6 nm x 410 μm

Accelerator - arXiv:1908.08212

- large statistics & excellent detector => use double-tagged events only for q /anti-q separation!
- => drastic reduction of systematic uncertainties wrt LEP

Precision EW at the GigaZ

- ~250 x LEP, with beam polarisation => expect at least factor 10 improvement
- Measure A_e via A_{LR} as before now crucial: knowledge of √s!
 - Exploit excellent momentum measurement of ILD (or SiD)
 - calibrate with J/ψ->μ+μ-
 - => obtain \sqrt{s} from $\mu^+\mu^-\gamma$ events to 1 MeV precision => $\delta A_e(\sqrt{s})=2 \times 10^{-5}$, comparable to stat. error.
 - => final number dominated by polarisation uncertainty
- Fermion asymmetries for μ / τ /c /b: new, detailed ILD studies in 2019 profit from
 - tiny ILC beam spot (@91.2 GeV): 1.12 μm x 14.6 nm x 410 μm

Accelerator - arXiv:1908.08212

- large statistics & excellent detector => use double-tagged events only for q /anti-q separation!
- => drastic reduction of systematic uncertainties wrt LEP

In particular: hemisphere correlations found negligible (Geant4-based detector simulation)

Precision EW at the GigaZ

- ~250 x LEP, with beam polarisation => expect at least factor 10 improvement
- Measure A_e via A_{LR} as before now crucial: knowledge of √s!
 - Exploit excellent momentum measurement of ILD (or SiD)
 - calibrate with J/ψ->μ+μ-
 - => obtain \sqrt{s} from $\mu^+\mu^-\gamma$ events to 1 MeV precision => $\delta A_e(\sqrt{s})=2 \times 10^{-5}$, comparable to stat. error.
 - => final number dominated by polarisation uncertainty
- Fermion asymmetries for μ / τ /c /b: new, detailed ILD studies in 2019 profit from
 - tiny ILC beam spot (@91.2 GeV): 1.12 μm x 14.6 nm x 410 μm

Accelerator - arXiv:1908.08212

- large statistics & excellent detector => use double-tagged events only for q /anti-q separation!
- => drastic reduction of systematic uncertainties wrt LEP

In particular: hemisphere correlations found negligible (Geant4-based detector simulation)

Also: the polarised $A^f_{FB,LR}$ receives **7 x smaller radiative corrections** than the unpolarised A^f_{FB} !

- as expected, at least factor 10, often ~50 improvement over LEP/SLC
- note in particular:
 - A_c nearly 100 x better thanks to excellent charm / anti-charm tagging:
 - excellent vertex detector
 - tiny ILC beam spot
 - Kaon-ID via dE/dx in ILD's TPC
- typically only factor 2-3 less precise than FCCee's unpolarised *TeraZ*

GigaZ: results of new detailed ILD studies

- as expected, at least factor 10, often ~50 improvement over LEP/SLC
- note in particular:
 - A_c nearly 100 x better thanks to excellent charm / anti-charm tagging:
 - excellent vertex detector
 - tiny ILC beam spot
 - Kaon-ID via dE/dx in ILD's TPC
- typically only factor 2-3 less precise than FCCee's unpolarised *TeraZ*

Conclusions

- · Electroweak observables are an important part of the physics case of future e+e- colliders
- ILC offers significant progress over LEP already at 250 GeV
- Even more improvement from dedicated Z pole running
- Beam polarisation boosts "return on invested ab-1"
- ILC GigaZ program has been scrutinized, again, in summer 2019 following discussions in Granada
 => results are now included in SMEFT fits by the ECFA WG on HiggsCouplings@ Future
 Colliders for the Briefing Book of the European Strategy Update!
- Tiny ILC beam spot leverages excellent 2ndary vertex resolution
- Kaon identification via dE/dx in ILD TPC enhances b- and c-charge separation
- ILC offers a very attractive and competitive electroweak precision program!

Backup

\sqrt{s}	Λ_{LL}	Λ_{RR}	Λ_{VV}	Λ_{AA}
universal Λ's				
ILC250	108	106	161	139
ILC500	189	185	280	240
ILC1000	323	314	478	403
$e^+e^- \rightarrow e^+e^-$				
ILC250	71	70	118	71
ILC500	114	132	214	135
ILC1000	236	232	376	231
$e^+e^- \rightarrow \mu^+\mu^-$				
ILC250	80	79	117	104
ILC500	134	133	198	177
ILC1000	224	222	332	296
$e^+e^- \rightarrow \tau^+\tau^-$				
ILC250	72	72	109	97
ILC500	127	126	190	168
ILC1000	215	214	321	286
$e^+e^- o b\overline{b}$				
ILC250	78	73	103	106
ILC500	134	124	175	178
ILC1000	226	205	292	296
$e^+e^- \to c\overline{c}$				
ILC250	51	52	75	68
ILC500	90	90	130	117
ILC1000	153	151	220	199

	250 GeV,	2 ab^{-1}	500 GeV,	$4 \mathrm{~ab^{-1}}$	1 TeV,	$8~{\rm ab^{-1}}$
Model	excl.	disc.	excl.	disc.	excl.	disc.
SSM	7.8	4.9	13	8.4	22	14
ALR	9.5	6.0	17	11	25	18
χ	7.0	4.5	12	7.8	21	13
ψ	3.7	2.4	6.4	4.1	11	6.8
η	4.2	2.7	7.3	4.6	12	7.9

\sqrt{s}	$\Delta \mathbf{W}$	$\Delta \mathbf{Y}$	ρ
HL-LHC	15×10^{-5}	20×10^{-5}	-0.97
ILC250	3.4×10^{-5}	2.4×10^{-5}	-0.34
ILC500	1.1×10^{-5}	0.78×10^{-5}	-0.35
ILC1000	0.39×10^{-5}	0.27×10^{-5}	-0.38
500 GeV, no beam pol.	2.0×10^{-5}	1.2×10^{-5}	-0.78

Outlook to higher energies: top / bottom EFT

Fit of 10 Wilson coefficients of SMEFT that modify top and bottom production

arXiv:1907.10619

- Already e+e- -> bb at ILC250 helps a lot
- ILC500 with e+e- -> tt even more so!

- · ILC precision allows model discrimination
- sensitivity in g^Z_L, g^Z_R plane complementary to LHC

Sensitivity to huge variety of models with compositeness and/or extra-dimensions complementary to resonance searches

Also from other e+e- -> ff:

- probe Z' up to ~10 TeV
 500fb⁻¹ @ 500 GeV (initial run)
- up to ~17 TeV for 1ab-1 at 1 TeV
- polarised beams gain ~ 2TeV in reach

Lumi/IP vs energy

Lumi/IP vs energy

	$\operatorname{sign}(P(e^-), P(e^+)) =$				
	(-, +)	(+, -)	(-, -)	(+, +)	sum
luminosity [fb ⁻¹]	40	40	10	10	
$\sigma(P_{e^-}, P_{e^+})$ [nb]	60.4	46.1	35.9	29.4	
Z events [10 ⁹]	2.4	1.8	0.36	0.29	4.9
hadronic Z events [10 ⁹]	1.7	1.3	0.25	0.21	3.4

New Properties of the Higgs Boson

discovery and identification of various BSM benchmark models (not observable at LHC)

- e.g. from 2HDMs or additional singlets (as in NMSSM)
- Can be searched for with various techniques

- e.g. from 2HDMs or additional singlets (as in NMSSM)
- Can be searched for with various techniques
- Here: recoil against Z ->μ+μ-@250 GeV
 - analogous to SM Higgs recoil

- e.g. from 2HDMs or additional singlets (as in NMSSM)
- Can be searched for with various techniques
- Here: recoil against Z ->μ+μ-@250 GeV
 - analogous to SM Higgs recoil

- e.g. from 2HDMs or additional singlets (as in NMSSM)
- Can be searched for with various techniques
- Here: recoil against Z ->μ+μ-@250 GeV
 - analogous to SM Higgs recoil

Additional Scalar(Higgs) Bosons

- e.g. from 2HDMs or additional singlets (as in NMSSM)
- Can be searched for with various techniques
- Here: recoil against Z ->μ+μ-@250 GeV
 - analogous to SM Higgs recoil

Additional Scalar(Higgs) Bosons

- e.g. from 2HDMs or additional singlets (as in NMSSM)
- Can be searched for with various techniques
- Here: recoil against Z ->µ+µ-@250 GeV
 - analogous to SM Higgs recoil

