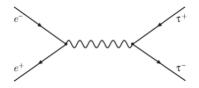
$e^+e^- \to \tau^+\tau^-$


Keita YUMINO

SOKENDAI

September 26, 2019

Introduction

Collision of e^+ and e^- generates tau lepton pair in ILC

Tau-lepton is the heaviest lepton

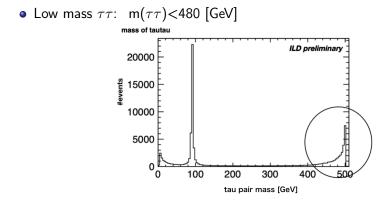
 $m_{ au} = 1776.86 \pm 0.12 MeV$

This process can be used to search for new interactions, also making use of our ability to measure the tau polarization

Keita YUMINO (JPN)

motivation

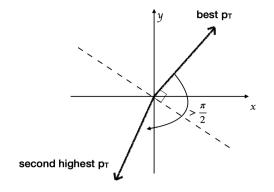
Correct reconstruction of tau decay mode is important for the tau polarization measurement.


the simulation for the purpose of reconstruction of events including hadronic decay of tau lepton pair generated in ILC

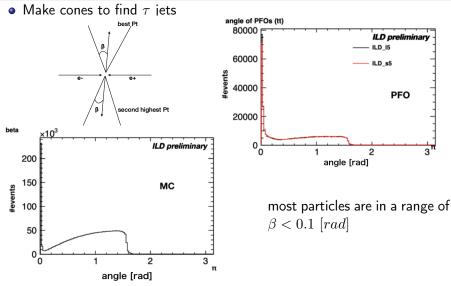
- Event selection
- Reduction of backgrounds
- ID of tau decay mode
 - $\tau \to \pi \nu$
 - $\tau \to \rho \nu$
 - $\tau \to a_1 \nu$
- Extraction of the tau's polarization

Simulation setup

Signal: $e^+e^- \rightarrow \tau^+\tau^-$


• High mass $\tau \tau$: m($\tau \tau$)>480 [GeV]

Method


1:Find first&second τ seed

• charged PFO with first&second highest p_T and $\delta\phi > \pi/2$

Method

event selection

- Cut 1:visible τ jet mass < 2.5 [GeV]
- Cut2:acolineality between τ jet seed tracks < 0.15 [rad]
- Cut3:energy sum of pfos outside cones < 40 [GeV] p_T sum of pfos outside cones < 20 [GeV]
- Cut4:Cone 1 particle's charge \times Cone 2 particle's charge = -1
- Cut5:High energy $\mu^+\mu^-\&~e^+e^-$ cut
- Cut6:visible mass of 2 τ jet system < 400 GeV
- Cut7:angle between τ jet axes > 3.05 [rad]
- Cut8:total number of PFOs < 12

Last General meeting

I'm mainly working on tau decay mode identification

Starting to work on TMVA to identify tau decay mode

- Understanding what is TMVA and how to use it
- Comparison between previous result and TMVA result

Previous result

pi	1.83	83.93	11.24	0.56	0.39	1.15	0.89
rho	4.82	2.30	82.65	8.94	1.21	0.07	0.02
a11p	7.29	1.39	19.51	68.81	2.94	0.05	0.02
a13p	9.44	2.78	1.62	0.62	85.48	0.03	0.03
e	5.00	37.93	40.10	1.33	0.02	15.47	0.14
mu	0.98	11.75	0.64	0.00	0.02	0.00	86.62
other	12.66	10.57	14.70	14.98	46.91	0.09	0.10
	unk	pi	rho	a11p	a13p	e	mu

reconstructed tau decay mode

Efficiency: each reconstructed decay mode sum of all entries for each MC Truth decay mode

MC truth

Result (using IsolatedLeptonTagging)

pi	1.80	82.34	12.11	0.39	0.37	1.84	1.15	
rho	4.99	1.01	79.92	7.40	0.96	5.15	0.58	
a11p	8.47	0.87	16.75	64.31	2.16	6.78	0.66	
a13p	10.37	2.48	1.87	0.43	84.75	0.05	0.05	
e	2.08	0.04	0.38	0.11	0.02	97.10	0.27	
mu	0.98	0.64	0.10	0.00	0.02	0.67	97.59	
other	21.19	9.95	14.43	13.50	38.99	1.57	0.37	
	unk	pi	rho	a11p	a13p	е	mu	

reconstructed tau decay mode

Efficiency: each reconstructed decay mode sum of all entries for each MC Truth decay mode

MC truth

MC truth	pi rho a11p a13p e mu other	1.80 4.99 8.47 10.37 2.08 0.98 21.19 unk	82.34 1.01 0.87 2.48 0.04 0.64 9.95 pi	12.11 79.92 16.75 1.87 0.38 0.10 14.43 rho	0.39 7.40 64.31 0.43 0.11 0.00 13.50 a11p	0.37 0.96 2.16 84.75 0.02 0.02 38.99 a13p	1.84 5.15 6.78 0.05 97.10 0.67 1.57 e	1.15 0.58 0.66 0.05 0.27 97.59 0.37 mu
reconstructed tau decay mode								

Starting to work on TMVA to identify tau decay mode better

Keita YUMINO (JPN)

pi	1.80	82.34	12.11	0.39	0.37	1.84	1.15		
rho	4.99	1.01	79.92	7.40	0.96	5.15	0.58		
a11p	8.47	0.87	16.75	64.31	2.16	6.78	0.66		
a13p	10.37	2.48	1.87	0.43	84.75	0.05	0.05		
e	2.08	0.04	0.38	0.11	0.02	97.10	0.27		
mu	0.98	0.64	0.10	0.00	0.02	0.67	97.59		
other	21.19	9.95	14.43	13.50	38.99	1.57	0.37		
	unk	pi	rho	a11p	a13p	е	mu		
	reconstructed tau decay mode								

reconstructed tau decay mode

First, concentrate on π , ρ , a_1 decay mode identification

MC truth

TMVA Setup

Input parameter

1 NG: Number of Gamma inside cone	⑤ MMin
② MG: Mass of Gamma [GeV]	6 MinAng1
3 PGM: Mass of charged pion and Gamma [GeV]	⑦ MinAng2
④ MMax	⑧ GEMax

HiddenLayers = N+5,5

 $\mathsf{TestRate} = 5$

EstimatorType = Mean Square Estimator

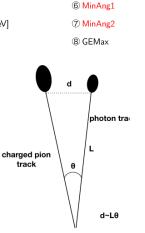
MVA type = Boosted Decision Trees NeuronType = tanh NCycles = 1000

TMVA Setup

Input parameter

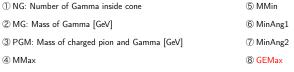
NG: Number of Gamma inside cone	(5) MMin
② MG: Mass of Gamma [GeV]	6 MinAng1
③ PGM: Mass of charged pion and Gamma [GeV]	⑦ MinAng2
④ MMax	⑧ GEMax

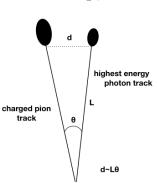
the 2-prong masses


charge : +/-

TMVA Setup

(5) MMin


Input parameter

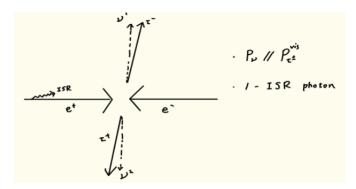

- ① NG: Number of Gamma inside cone
- 2 MG: Mass of Gamma [GeV]
- ③ PGM: Mass of charged pion and Gamma [GeV]
- 4 MMax

Input parameter

Previous result

M	Ξ
C	2
5	ŧ
2	1
1	÷

pi	1.80	82.34	12.11	0.39
rho	4.99	1.01	79.92	7.40
a11p	8.47	0.87	16.75	64.31
	unk	pi	rho	a11p


reconstructed tau decay mode

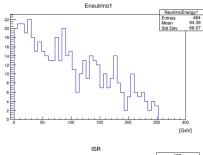
TMVA result

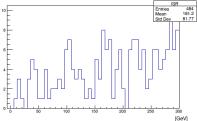
7	pi	2.03	91.51	2.79	0.68
0	rho	8.71	3.45	72.56	9.55
truth	a11p	14.00	1.29	10.00	67.26
τh		unk	pi	rho	allp

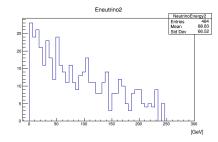
reconstructed tau decay mode

Neutrino energy calculation

$$\begin{split} \Sigma E &= E_{\nu}^{1} + E_{\nu}^{2} + E_{\tau^{+}}^{vis} + E_{\tau^{-}}^{vis} + E_{ISR} = 500\\ \Sigma P_{x} &= P_{\tau^{-}x}^{vis} + P_{\tau^{+}x}^{vis} + P_{\nu x}^{1} + P_{\nu x}^{2} = 0\\ \Sigma P_{y} &= P_{\tau^{-}y}^{vis} + P_{\tau^{+}y}^{vis} + P_{\nu y}^{1} + P_{\nu y}^{2} = 0\\ \Sigma P_{z} &= P_{z}^{ISR} + P_{\tau^{+}}^{vis} + P_{\tau^{-}}^{vis} + P_{\nu z}^{1} + P_{\nu z}^{2} = 0 \end{split}$$

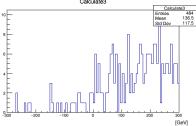

Keita YUMINO (JPN)

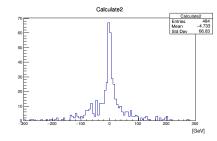

Neutrino energy calculation


$$\begin{split} \Sigma E &= E_{\nu}^{1} + E_{\nu}^{2} + E_{\tau^{+}}^{vis} + E_{\tau^{-}}^{vis} + E_{ISR} = 500\\ \Sigma P_{x} &= P_{\tau^{-}x}^{vis} + P_{\tau^{+}x}^{vis} + P_{\nu x}^{1} + P_{\nu x}^{2} = 0\\ \Sigma P_{y} &= P_{\tau^{-}y}^{vis} + P_{\tau^{+}y}^{vis} + P_{\nu y}^{1} + P_{\nu y}^{2} = 0\\ \Sigma P_{z} &= P_{z}^{ISR} + P_{\tau^{+}}^{vis} + P_{\tau^{-}}^{vis} + P_{\nu z}^{1} + P_{\nu z}^{2} = 0 \end{split}$$

$$\begin{split} E_{\nu}^{1} &= \frac{P_{\tau^{-y}}^{vis} + P_{\tau^{+y}}^{vis}}{P^{-x}P^{+y} - P^{-y}P^{+x}} P^{+x} - \frac{P_{\tau^{-x}}^{vis} + P_{\tau^{+x}}^{vis}}{P^{-x}P^{+y} - P^{-y}P^{+x}} P^{+y} \\ E_{\nu}^{2} &= \frac{P_{\tau^{-x}}^{vis} + P_{\tau^{+x}}^{vis}}{P^{-x}P^{+y} - P^{-y}P^{+x}} P^{-y} - \frac{P_{\tau^{-y}}^{vis} + P_{\tau^{+y}}^{vis}}{P^{-x}P^{+y} - P^{-y}P^{+x}} P^{-x} \\ E_{ISR} &= 500 - E_{\nu}^{1} - E_{\nu}^{2} - E_{\tau^{+}}^{vis} - E_{\tau^{-}}^{vis} \\ P^{\pm i} = \frac{P_{\tau^{is}}^{vis}}{P_{\tau^{yis}}^{vis}} \quad i = (x, y) \end{split}$$

Keita YUMINO (JPN)


$$E_{\nu}^{1} = \frac{\frac{P^{vis}_{\tau-y} + P^{vis}_{\tau+y}}{P^{-x}P^{+y} - P^{-y}P^{+x}}P^{+x} - \frac{\frac{P^{vis}_{\tau-x} + P^{vis}_{\tau+x}}{P^{-x}P^{+y} - P^{-y}P^{+x}}P^{+y}$$


$$E_{\nu}^{2} = \frac{P_{\tau-x}^{vis} + P_{\tau+x}^{vis}}{P^{-x}P^{+y} - P^{-y}P^{+x}} P^{-y} - \frac{P_{\tau-y}^{vis} + P_{\tau+y}^{vis}}{P^{-x}P^{+y} - P^{-y}P^{+x}} P^{-x}$$

$$E_{ISR} = 500 - E_{\nu}^{1} - E_{\nu}^{2} - E_{\tau^{+}}^{vis} - E_{\tau^{-}}^{vis}$$

Keita YUMINO (JPN)

$$\begin{split} \Sigma E &= E_{\nu}^{1} + E_{\nu}^{2} + E_{\tau^{+}}^{vis} + E_{\tau^{-}}^{vis} + E_{ISR} = 500 \\ \Sigma P_{x} &= P_{\tau^{-}x}^{vis} + P_{\tau^{+}x}^{vis} + P_{\nu x}^{1} + P_{\nu x}^{2} = 0 \\ \Sigma P_{y} &= P_{\tau^{-}y}^{vis} + P_{\tau^{+}y}^{vis} + P_{\nu y}^{1} + P_{\nu y}^{2} = 0 \end{split}$$

Keita YUMINO (JPN)

 $e^+e^- \rightarrow \tau^+\tau^-$

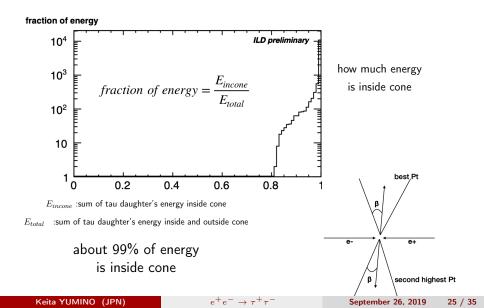
September 26, 2019 21 / 35

Plan

• For a1-1p decay, some improvement are needed

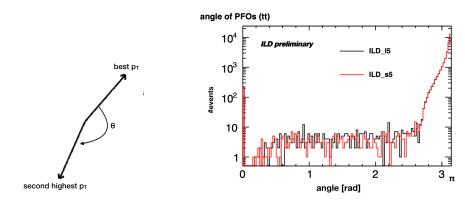
some more input parameters $m_{\gamma\gamma}$ $m_{\gamma\gamma\pi}$ $m_{\gamma\pi}$ E_{γ}^{max} E_{γ}^{min}

• For calculating the neutrino energy


There is some mistake somewhere

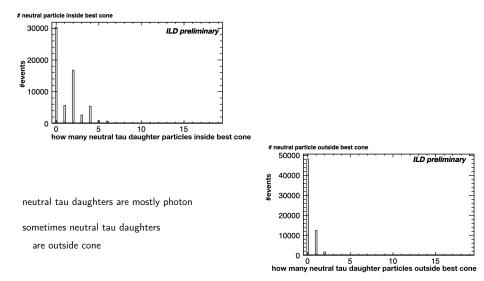
Keita YUMINO (JPN)

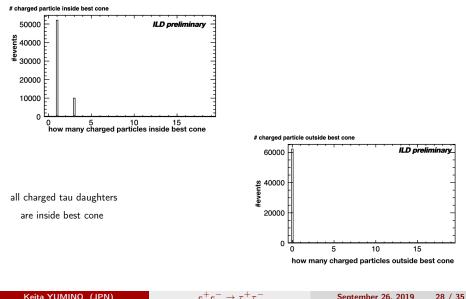
Summary


- \bullet I simulated $e^+e^- \to \tau^+\tau^-$ and found jets in the process
- About 99% of energy is inside cone
 - Inside cone
 - \bigcirc all charged tau daughters are inside best cone
 - neutral tau daughters are mostly photon and sometimes neutral tau daughters are outside cone
- Cut table including major backgrounds were made.
- \bullet After including all cuts, most of the backgrounds and Low mass $\tau\tau$ are rejected
- Need some improvement to include TMVA output

Method

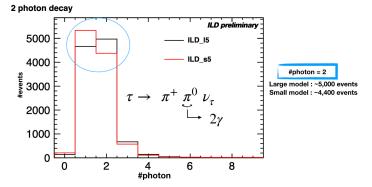
Method


 \bullet angle θ formed by first τ seed and second τ seed


first τ seeds and second τ seeds are almost back-to-back

Keita YUMINO (JPN)

Result



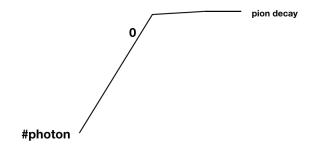
Result

Result

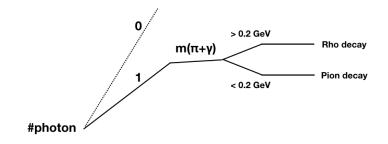
• Comparison between Large and Small ILD model

Large model is better than small model to count photons

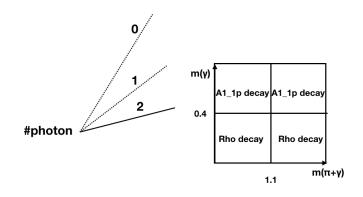
Cut table of Large detectors model

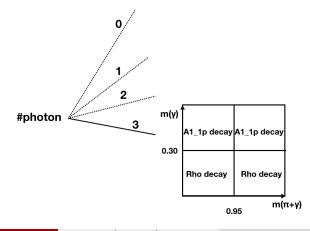

Preliminary

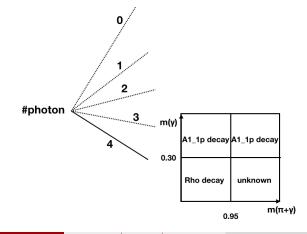
Beam Polarisation = (-80, +30),Integrated Lumi = 1600.0 selected events/1000


PROCESS	ttHiMass	ttLoMass	mumu	4f_ZZ_WW_Mix_I	4fZZleptonic	
UNCUT	593.21	2310.53	3211.59	864.47	65.52	
CUT 1	492.65	1787.35	2637.14	684.99	47.76	
CUT 2	482.91	272.37	873.61	119.57	4.55	
CUT 3	451.89	215.55	778.98	104.84	2.01	
CUT 4	428.37	197.76	764.75	96.83	1.17	
CUT 5	428.35	197.76	86.20	87.72	0.83	
CUT 6	427.45	197.63	24.78	70.01	0.71	
CUT 7	425.51	132.11	14.05	27.50	0.48	
CUT 8	425.38	132.00	14.05	27.49	0.48	
PROCESS	4fsingleZee	2fZhadronic	4f_sZ_sW_Mix_I	4fWWleptonic	4fsingleWleptonic	4fsingleZnunu
UNCUT	8090.16	35325.10	1066.31	832.88	2744.43	294.51
CUT 1	5164.76	5060.10	781.16	667.61	2071.75	184.71
CUT 2	355.88	73.24	74.44	115.51	263.39	4.39
CUIT O						
CUT 3	159.89	8.54	59.45	101.09	221.57	3.38
CUT 3 CUT 4	159.89 112.08	8.54 0.73	59.45 53.05	101.09 92.18	221.57 201.93	3.38 1.72
CUT 4	112.08	0.73	53.05	92.18	201.93	1.72
CUT 4 CUT 5	112.08 104.91	0.73 0.73	53.05 50.76	92.18 92.08	201.93 201.93	1.72 1.72

4f ZZ WW Mix I:4fZZWWMixleptonic 4f sZ sW Mix I:4fsingleZsingleWMixleptonic


Number of charged particle inside cone = 1


Number of charged particle inside cone = 1


Number of charged particle inside cone = 1

Number of charged particle inside cone = 1

Number of charged particle inside cone = 1

Keita YUMINO (JPN)