Multiple scattering in TB19

Bohdan Dudar

Taras Shevchenko National University of Kyiv bohdan96@gmail.com

October 16, 2019

MC Geometry setup for TB19

Tested:

- *E_e*: 1 GeV; 5 GeV
- Gun to dummy distance: 1.5 m; 6.7 m
- Configuration: Only air; only telescope; only trigger; both telescope and triggers

MC simulated facilities

Gun	Particle: e^- Energy: 1 GeV / 5 GeV (mono-energetic) Direction: $\frac{p_z}{p} = 1$ (no angular smearing)		
	Material: G4_PLASTIC_SC_VINYLTOLUENE Width: 4.128 mm		
2 cm ALPIDE Telescope	Material: <i>G4_Si</i> Width: 50 µm each plane Number of planes: 7		
	if (particle_is_primary && boundary) {Write it's position;}		

Only Air; 5 GeV; 6 meters example

Results on multiple scattering

σ , mm	5 GeV, 6.7m	5 GeV, 1.5m	1 GeV, 6.7m	1 GeV, 1.5m
Air	1.67	0.2	7	0.85
Telescope	1.68	0.22	7.03	0.87
Triggers	2.51	0.55	10.1	2.18
Both	2.51	0.55	10.11	2.22

There is also angular beam spread! (assumed isotropic)

$$\theta_{beam} = [0, 752 \ \mu rad]$$

$$d = 6.7 \ m \Rightarrow y_{box,max} = \pm 5.04 \ mm \Rightarrow \sigma_{beam} = \frac{10.08}{\sqrt{12}} = 2.91 \ mm$$

$$d = 1.5 \ m \Rightarrow y_{box,max} = \pm 1.13 \ mm \Rightarrow \sigma_{beam} = \frac{2.26}{\sqrt{12}} = 0.65 \ mm$$

- Distance change from 6.7 m to 1.5 reduces multiple scattering spread by factor 4.5
- Oistance change from 6.7 m to 1.5 m reduces angular beam spread by factor 4.5
- States of the second states
- Scintilators increase multiple scattering spread by factor 1.5

Less distance – better

Geometry Update for resolution test

Changes:

- Only 2 ALPIDE planes
- Vary distance between them
- Added beam size: 5×5 mm square

Check: How precisely telescope can predict impact point in the dummy $\sigma(y_{true} - y_{predict})$

Bohdan Dudar (TSNUK)

Results on resolution test

Limitations:

Activated pixel is calculated by true hit coordinates. Therefore only 1 pixel per plane is activated. In reality multiple pixels can be activated which influence resolution **Conclusion:**

- 20 cm between planes is good for both energies
- Multiple scattering prohibit improving for larger distances

Resolution with 3 planes?

Note: 3rd plane is added with 14 μ m staging to improve resolution

 $\sigma^{5\,GeV}_{2planes}=0.02423~\rm{mm}$

$$\sigma^{5\,GeV}_{3\,\textit{planes}}=0.02481\,\,\mathrm{mm}$$

No improvement is seen. But additional planes can help to fight background

Bohdan Dudar (TSNUK)

Pre-showering in TB16

Pre-showering is superior and shadows studying back-scattering signals

Bohdan Dudar (TSNUK)

October 16, 2019 10 / 10