

Analysis of SiW–ECAL technological prototype beam test with electron beam

Y. Kato^B, K. Goto^A, T. Suehara^A and ILD SiW-ECAL group Kyushu University^A The University of Tokyo^B

> LCWS2019 @ Sendai, Japan 29th Oct. 2019

katou@icepp.s.u-tokyo.ac.jp

Table of Contents

- Introduction
- R&D of SiW-ECAL technological prototype
 - FEV13-Jp Status
- Beam Test 2019
- Procedure for Energy Measurement
- Analysis
 - Trigger Adjustment
 - Pedestal
 - MIP
 - TDC
 - Shower
 - Remain Issues

International Large Detector

One of the detector concepts at the ILC

Optimized for Particle Flow Algorithm

• Reconstruct & identify all the particles

Components

- Vertex detector
- Trackers
- Calorimeters
 - ECAL
 - ScW-ECAL
 - SiW-FCAI • HCAL
- Muon Yoke

etc.

R&D of SiW-ECAL technological prototypes

ASU: 12 years of R&D

Most complex element: electro-mechanical integration

- Distrib / Collect signals from VFE (ASICs), Analog & Digital with dyn. range \geq 7500
- Mechanical placer & holder for Wafers \rightarrow precision
- Thickness constraints

FEV11	F	EV11-COB	
	DIF + SMB		
	256 P-I-N diodes 0.25 cm ² each 9 x 9 cm ² total area		
Vincent.Boudr	v@in2p3.fr SiV	FEV13	

Milestone	Date	Object	Details	REM
1 st ASIC proto	2007	SK1 on FEV4	36 ch, 5 SCA	proto, lim @ 2000 mips
1 st ASIC	2009	SK2	64ch, 15 SCA	3000 mips
1 st prototype of a PCB	2010	FEV7	8 SK2	СОВ
1 st working PCB	2011	FEV8	16 SK2 (1024 ch)	CIP (QGFP)
1 st working ASU in BT	2012	FEV8	4 SK2 readout (256ch)	best S/N ~ 14 (HG), no PP retriggers 50– 75%
1 st run in PP	2013	FEV8-CIP		BGA, PP
1 st full ASU	2015	FEV10	4 units on test board 1024 channel	S/N ~ 17–18 (High Gain) retrigger ~ 50%
1 st SLABs	2016	FEV11	7 units	
pre-calo	2017	FEV 11	7 units	S/N ~ 20 (12) _{Trig,} 6–8 % masked
1 st technological ECAL	2018	SLABvFEV11 & FEV13 SK2a+ Compact stack	SK2 & SK2a (⊃timing)	Improved S/N Timing

CALI (co

29th Oct. 2019

R&D of SiW-ECAL technological prototypes

Beam-test 2015-2018

29th Oct. 2019

R&D of SiW-ECAL technological prototypes

Major changes in FEV11 \rightarrow 13 and SMBv4 \rightarrow v5

> ASIC: SKIROC2 \rightarrow 2A

- Individual threshold control
- Improvements on TDC
- Smaller SMB footprint
- Connection by 0.4mm-pitch flex cables
 - Two candidates, footprint compatible

Analogue core: SKIROC2A

FEV13–Jp Status

- ASIC: SKIROC2A
- Si thickness: 320µm & <u>650µm</u> New!
- \circ 256 ch/sensor × 4 sensor/slab

See previous talk for details

- FEV-SMB Connection: Flexible cable or Micro-coaxial cable
- EM shielding: w/ Carbon frame and cover
- Power Pulsing

Beam Test 2019 @ DESY

- Beam time:
 - 24th June 7th July at DESY test beam facility
 - ∘ e⁻ beam: 1 5 GeV
- Presence from:
- Support & Hardware from:

Beam Test 2019 @ DESY

- Beam time:
 - 24th June 7th July at DESY test beam facility
 - e[−] beam: 1 5 GeV
- Objectives:
 - Comparison of ASU based on BGA and based on Chip-On-Board (COB)
 - Test of new SL–Boards
 - Validation of FEV13-Jp ← Target of this talk
- Programs:

MIP program (w/o Tungsten)

- Position scan for MIP calibration
- TDC test
- Angled beam: 25 deg.
- <u>Retriggering / double pedestal</u>

Shower program (w/ Tungsten)

- Energy measurement
- Response from large signal
- TDC / auto gain
- Edge effect

Setup for Beam Test

- Devices: 2 types of readouts
 - $^{\circ}$ DIF based slabs: FEV13-Jp \times 5
 - SLB based slabs:
 - \circ COB \times 2
 - FEV12 × 2
- Absorber: Tungsten
 - $X_0 = 3.5$ mm, $R_M = 9$ mm, $\lambda_0 = 96$ mm

29th Oct. 2019

Procedure for Energy Measurement

Single Slab Analysis

- 1. Trigger adjustment & Masking of noisy channels
- 2. Pedestal calibration

16 chips × 64 channels × 15 memories

3. Gain calibration using MIP

16 chips × 64 channels

4. (TDC calibration using test pulse) time walk correction

Multi Slab Analysis

- 1. Timing coincidence using bunch crossing ID (BCID) $\Delta t = 0.2 \ \mu s$
- 2. Event Building

Trigger Adjustment

slabP1 chip15 ch56

29th Oct. 2019

Pedestal Analysis

- Non-triggered ADC output (around ~300 [ADC])
- Fitted by Gaussian

lowGain[13][0][39] {lowGain[13][0][39]>250&&lowGain[13][0][39]<500&&badbcid[13][0]==0}

Pedestal Homogeneity: Mean

- Mean of Gaussian
- SCA = 0 (Memory-cell dependence is referred later.)

mean of pedestals looks generally uniform within the same chip.

29th Oct. 2019

Pedestal Homogeneity: Width

- Sigma of Gaussian
- SCA = 0 (Memory-cell dependence is referred later.)

Width of pedestal is almost uniform (3^{4}) throughout.

6

5

4

3

2

1

Pedestal Stability

• Pedestal stability is confirmed in this beam time.

MIP event

- MIP program is performed for mainly energy calibration of all the pixels.
- Hit map: Sum of the triggered events
- Event display: ADC output of single event

• Correlation of TDC between slab 1 and 2

- Select 1 ch (at the center of the beam), 450 < ADC < 500 (to avoid timewalk)
- ~10 / 1 ns at the normal slope: timing resolution ~ a few ns?
- TDC calibration in progress.

29th Oct. 2019

MIP spectrum

slab	P1	P2	P3	K1	K2
thickness	650µm	650µm	320µm	650µm	650µm
MPV	146.5	144.9	71.3	141.4	146.1
Ped_width	3.0	3.0	3.3	2.8	3.1
S/N	49.0	48.9	21.7	50.2	47.5

MIP calibration: Summary

LCWS2019 Yu Kato

29th Oct. 2019

29th Oct. 2019

29th Oct. 2019

29th Oct. 2019

29th Oct. 2019

MIP calibration: Summary

29th Oct. 2019

29th Oct. 2019

29th Oct. 2019

• We performed detector simulation Porthis

beam test.

- FEV13:
 - 0 CF: 0.6mm
 - Electronics(Air) 0
 - PCB: K1: 1.6mm, others: 1.8mm 0
 - Glue(Air): 0.08mm 0
 - Si: 0.32mm or 0.65mm 0
 - Glue(Air): 0.08mm 0
 - Kapton(Cu): 0.06mm 0
 - CF: 0.6mm 0
 - Plastic(polyethylene): 5mm 0

Remaining Issues

Double pedestal / Retrigger

run 32015, slab P1

29th Oct. 2019

LCWS2019 Yu Kato

- We found the difference of pedestals between ADC/TDC mode.
- Memory-cell dependence is not same.
- In the first memory cell, the difference of typical Ped_mean is ~15.

- We found the difference of pedestals between ADC/TDC mode.
- Memory-cell dependence is not same.
- In TDC mode, SCA² is worse.

- We found the difference of pedestals between ADC/TDC mode.
- Memory-cell dependence is not same.
- In TDC mode, SCA² is worse.

Work in progress...

Summary

- FEV13: P1, P2, P3, K1, K2 in Kyushu
- BT 2019 DESY: 5 slabs fully working finally
- Pedestal study
 - Homogeneity and Stability is verified.
- Preliminary • In TDC mode, pedestals become worse probably because of retriggers.
- MIP study
 - MIP calibration is almost completed.
 - S/N is obtained for 5 slabs

slab	P1	P2	P3	K1	K2
thickness	650µm	650µm	320µm	650µm	650µm
S/N	49.0	48.9	21.7	50.2	47.5

TDC study

- Time walk is corrected.
- Timing resolution is obtained, however we need more detail study using injection.

Shower study

- Simulation setup is in progress.
- Event building is done and shower event is confirmed.

29th Oct. 2019

backup

29th Oct. 2019

Preliminary Simulation outputs

• Hit energy distribution in each slabs

29th Oct. 2019

SKIROC2A

- 64ch / chip × 16 chip / slab
- Self trigger: Individual threshold control is available.
- 3 types of output: ADC with high/low gain & TDC
- 3 types of DAQ mode:

1. ADC high & ADC low 2. TDC & ADC [high or low] 3. TDC & Auto Gain

lowGain[0][][]:Iteration\$ {lowGain[0][][>200&&lowGain[0][][<400}

29th Oct. 2019

LCWS2019 Yu Kato

1

FEV13: SiW-ECAL technological prototype

Major changes in FEV11 \rightarrow 13 and SMBv4 \rightarrow v5

- ASIC: SKIROC2 \rightarrow SKIROC2A
 - Individual threshold control
 - Improvements on TDC
- Dedicated power planefor AVDD_PA
 - Power layers: $2 \rightarrow 3$
 - − Total layers: $10 \rightarrow 12$
- Smaller SMB footprint
- Connection by 0.4mm-pitch flex cables
 - Two candidates, footprint compatible
- PP capacitor on FEV
 - 0.4 mm thickness, 40 mF x 6

Taikan Suehara, CALICE collaboration meeting at CERN, 1 Oct. 2019 page 2

Hardware update

- Previous problems
 - Carbon frame was not optimized for FEV13.
 - HV connection between SMB and flex was fragile.
- Update: New carbon frame

29th Oct. 2019

Hardware update

- Previous problems
 - Carbon frame was not optimized for FEV13.
 - HV connection between SMB and flex was fragile.
- Update: Conductive adhesion

Data Summary

- All the run information is summarized on <u>https://drive.google.com/file/d/1uQojIu9KIS9badhVrBf1LRFNt-kz62vV/view?usp=sharing</u>.
 - not perfect, could be improved.
- June 27: DIF on P2 had broken down \rightarrow June 28: replaced DIF and recovered
- June 28: made script to record temperature & start measurement
- July 1: Data transition from P1 was sometimes lost because of bad connection of HDMI

Pedestal Analysis

• We generated pedestal maps for all runs.

run_30003-006 _dif_1_1_1 (P1)