Study of Position Sensitive Silicon Detector (PSD)

UNIVERSITY

KYUS

Yuto Uesugi

Ryosuke Mori, Hiroaki Yamashiro, Taikan Suehara Tamaki Yoshioka, Kiyotomo Kawagoe

amaki rosmoka, Kiyotomo Kawago

Kyushu University

2019/10/31

International Workshop on Future Linear Colliders, LCWS2019

2019/10/31

International Workshop on Future Linear Colliders, LCWS2019

ILD (International Large Detector)

International Workshop on Future Linear Colliders, LCWS2019

ILD (International Large Detector)

SiWECAL

- Si detection layer + W absorption layer
 →multilayer structure (20~30 layer)
- Sandwich ASIC and PCB between detection and absorption layer
- W → Electromagnetic shower
- Measure the energy of photons

- γ in jets mostly comes from π^0 via $\pi^0 \rightarrow 2\gamma$ decay
- For accuracy of π^0 reconstruction, direction of photons (angular resolution) is important information

→high position resolution sensor

PSD (Position Sensitive Silicon Detector)

- Divide the signal in the resistive surface layer
- Hit position can be obtained as the gravity center of signal strengths of the electrodes

 With PSDs the position resolution can be improved with minimum increase of the acquisition channels

Previous study

• Irradiate the laser to PSD $(7 \times 7 \text{mm}^2)$ at 500 μ m intervals and get signals from electrodes at the four corners

$$X_{rec} = \frac{(ch5 + ch6) - (ch7 + ch8)}{ch5 + ch6 + ch7 + ch8}$$
$$Y_{rec} = \frac{(ch6 + ch8) - (ch5 + ch7)}{ch5 + ch6 + ch7 + ch8}$$

- Distortion at the edge
- Range is small $\rightarrow x$ axis : 0.33/7000µm y axis : 0.34/7000µm
- Due to DAQ problem, not measured in the Test beam

International Workshop on Future Linear Colliders, LCWS2019

New specification for PSD

Small dynamic range → Effect of readout impedance
 →Increased resistance of the resistive layer

New specification for PSD 1-a

- Cell size : $5.5 \times 5.5 \text{ mm}^2$
- Sensor thickness : 650 μm
- Three resistance values are available: 10 times, 20 times, and 30 times the previous PSD
 → in order to optimize the resistance value of the resistance layer

PSD 1

New specification for PSD 1-b

- Cell size : $5.5 \times 5.5 \text{ mm}^2$
- Sensor thickness : 650 μm
- Three resistance values are available: 10 times, 20 times, and 30 times the previous PSD
- Arrange low resistance lines at the cell edges to reduce distortion

PSD 1

 $\begin{array}{l} \mathsf{PSD 1} \\ \times 16 = 64 \mathsf{ch} \end{array}$

Low resistance line \rightarrow 1/4 times and 1/8

International Workshop on Future Linear Colliders, LCWS2019 $\,$ tin

times the center plane resistance

New specification for PSD 2

- Share adjacent cell pads
- Suppress increase in readout channel
- Multiple resistance values available
- If the number of read channels is the same, the pixel size can be reduced.
- Example : 16 × 16 cells
 PSD 1 → cell size is 11mm (2 times)
 PSD 2→ cell size is 5.86mm(16/15 times)

Conventional Si sensor 2014/%/41cell

→pixel size : 2 times

New specification for PSD 2

- Share adjacent cell pads
- Suppress increase in readout channel
- Multiple resistance values available
- If the number of read channels is the same, the pixel size can be reduced.
- Example : 16 × 16 cells
 PSD 1 → cell size is 11mm (2 times)
 PSD 2→ cell size is 5.86mm(16/15 times)

Conventional Si sensor 2014/x/41cell

PSD 2

New daughter board and connector

New board design of PSD 1

New design daughter board using CADENCE allegro
 ✓PSD 1 PCB with hole → in order to irradiate the laser to PSD
 ✓PSD 1 without hole → to measure with radio isotope or for test beam

New board design of PSD 2

PSD 2 Two resistance pattern →total 30ch

- PSD2 without hole
- PSD2 PCB with hole

- Dispenser made by Musashi Engineering (ML-808GX)
- High precision desktop operating type robot (SHOTMASTER400 Ω X)

2019/10/31

2019/10/31

- It's right after applying conductive bonding glue .
- I left a weight for several days.

Preparation for the Test beam

- Place: ELPH (Tohoku University)
- 560 MeV positron beam
- Use the active collimator with a plastic scintillator
- Program
 - 1. Measure position resolution using the collimator
 - 2. Measurement of position distortion without the collimator
 - 3. Multi-hit measurement prepare a target in front of PSD cause multiple particles to enter simultaneously by raising an electro -magnetic shower

Summary and prospect

- For γ reconstruction, it is important for sensor to have high position resolution.
- PSD methods avoids an increase in the number of readout channels.
- Glued the sensor to the PCB
- Preparation for test beam is in progress.
- To be done

✓ Laser measurement

- ✓Analysis of test beam data
- ✓ Production of PSDs designed to be mounted on ILC prototype

Back up

SKIROC analog

High voltage board design

• HV pad

• LEMO

Solder capacitor and LEMO connector