

KYUSHU UNIVERSI

Study of silicon sensors for precise timing measurement

Yuto Deguchi (Kyushu University)

Kiyotomo Kawagoe, Tamaki Yoshioka, Taikan Suehara,

Ryosuke Mori (Kyushu University)

Eloïse Mestre (Université PARIS-SACLAY/IN2P3)

Stéphane Callier (Omega/IN2P3)

Comprendre le monde construire l'avenir Microelectronics

International Linear Collider (ILC)

- What is the ILC ?
 - Electron and positron collider
 - $\sqrt{s} = 250 \text{ GeV}$ \rightarrow Up to 1 TeV in the future
 - Length: about 20 km
 - Search for new physics with precise measurement of Higgs and other particles
- Expectation of Higgs physic in ILC

The precise of Higgs couplings will be improved

- HL-LHC only
- HL-LHC + ILC250
- HL-LHC + ILC250 + ILC 500

International Large Detector (ILD)

- One of the detectors placed at the collision point
- Mainly charged particles are detected by tracking detector, and neutral particles are detected by calorimeter
- In the TPC, dE/dx is calculated by the collected charge to identify the particles

International Large Detector (ILD)

Identification of particles

"Particle ID Performance with dE/dx and TOF" Time of flight Uli Einhaus, ILD Benchmarking Days 2018 Particles have differences of flight time 14.0 - ILD preliminary π/K , dEdx π/K , TOF50 depending on their mass 12.0 π/K , combined K/p, dEdx $\beta = \frac{v}{c}$ (5 GeV) Particle mass 10.0 K/p, TOF50 separation power * K/p, combined 494 MeV/ c^{2} Κ 0.9951 8.0 139 MeV/ c^2 0.9996 π 6.0 In order to identify K and π , we need to have 4.0 time resolution less than 50 psec 2.0 LGAD (Low Gain Avalanche Diode) 0.0 20 10 momentum / GeV/c \rightarrow The time resolution : ~30 psec (in ATLAS study) Inverse type Reach-through type Multiplication layer covered bottom layer Fast charge collection speed Less variation in gain Insensitive area P Stop P⁺ Strip P⁺ Strip Strip 285 µm -implant N^{*} strip P⁻ Substrate P Multiplication Ρ'(π) **P** Multiplication N⁺

2019/10/23

LCWS2019 in Sendai

4

Avalanche Photo Diode

LGADs have same structure as APDs

We study APDs for LGAD development

Model number	Туре	V _{br}	Size
S12023-10A	Reach-through	139 V	ϕ 1 mm
S8664-10K	Inverse	417 V	ϕ 1 mm
pkg-10	Reach-through	about 250 V	<i>ф</i> 1 mm
pkg-20	Reach-through	about 120 V	ϕ 1 mm
S2384	Reach-through	159 V	φ 2 mm
S3884	Reach-through	189 V	ϕ 1.5 mm
S8664-20K	Inverse	425 V	φ 2 mm
S8664-55	Inverse	433 V	$5 \times 5 \text{ mm}^2$

LCWS2019 in Sendai

LGAD prototype (for LHC?)

Set up of DAQ


```
(compton edge : 207 keV)
```

 β source : ⁹⁰Sr, 2.2 MeV (Max)

connector board (with S8664-10K)

2019/10/23

LCWS2019 in Sendai

SKIROC2cms

- SKIROC2cms is an ASIC to readout signals from sensors
- Time over threshold and Time of arrival can be acquired

(P

2

Preamp polarity can be changed

Set up of DAQ

Measurement

Model number	Туре	HV	Gain at each HV
S12023-10A	Reach-through	129 V	450 (Measured value)
S8664-10K	Inverse	407 V	about 500~1000
pkg-10	Reach-through	240 V	about 1000
pkg-20	Reach-through	110 V	about 1000
S2384	Reach-through	149 V	about 1000
S3884	Reach-through	179 V	about 1000
S8664-20K	Inverse	415 V	about 500~1000
S8664-55	Inverse	415 V	about 500~1000
		[Hamamatsu datasheets

- S12023-10 : The Gain value is measured by DAQ with the γ source
- Other APDs : The Gain value is referenced by datasheet

250

1

0.1

300

High gain histogram

2019/10/23

LCWS2019 in Sendai

Low gain histogram

Low gain histogram

Due to the gain variation inside the APD, signals by ⁹⁰Sr will be landau distribution for each gain (such as black lines), and the total distribution can be like red line

The "shoulder" will be made by the landau distribution of the maximum gain

The active thickness can be calculated using the "shoulder"

The relation between ADC output and Charge of SKIROC2cms are known (such as right figure)

Figure 19: Low-gain transfer function for different shaper settings.

➢ S12023-10A (reach-through)

S12023-10A

Active thickness of S12023-10A : ~20 μm

Preparation of Test Beam

- ✓ Place : ELPH (Tohoku University)
- Basic characteristics
 - Active thickness
 - Comparison between Reach-through type and Inverse type
- Time resolution
 - Measurement time resolution using the three identical type APDs
- Position dependence in sensor
 - ADC measurement at several points in a sensor

Compare the characteristics at the center and corner

Preparation of Test Beam

Active collimator

2019/10/23

LCWS2019 in Sendai

Summary

- Signal heights are measured with 8 types of APDs for development of LGADs
- SKIROC2cms was used to take data
- Differences between reach-through type and inverse type were obtained
- In S12023-10A (reach-through), the active thickness was estimated
- Test Beam preparation is ongoing
- Next plan
 - Analysis of the Test Beam data Preparation for Test Beam
 - Producing the LGAD prototype for ILC