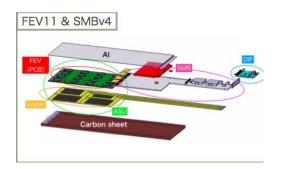


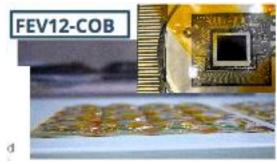
Summary R&D Detector

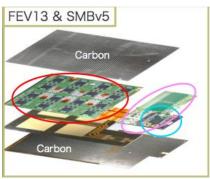
Peter Kluit

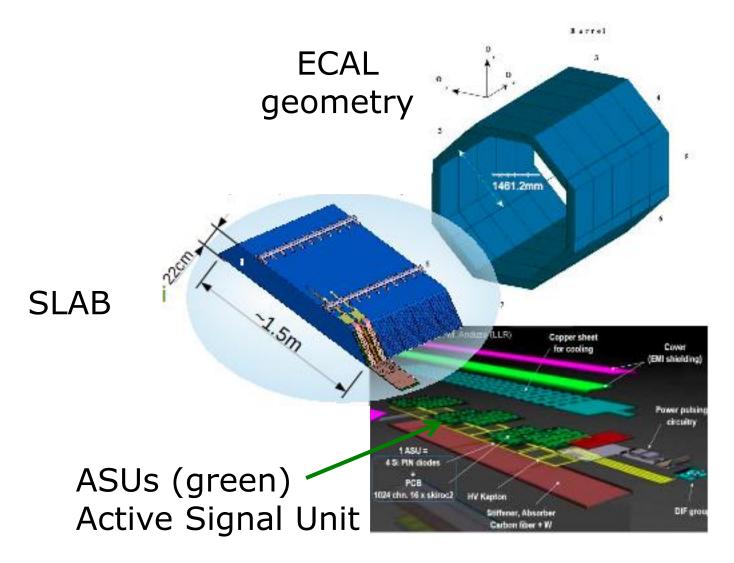
LCWS2019 - Sendai (Japan)

R&D Detector selected topics


- Calorimetry
 - Si-W ECAL
 - Scintillator ECAL
 - HCal, Muon shielding
- TPC tracking
- Silicon pixel detectors






R&D for Si-W ECAL

Three ASUs tested:

LCWS2019 - Sendai (Japan)

ASU: 12+ years of R&D

Next steps:

- Study of 8" 725 μm wafers
 - Thicker: will give better S/N
- ASICs with zero suppression
- Passive/Active cooling (see back up slide) in particular relevant for high luminosity phase
- Continuing high level integration

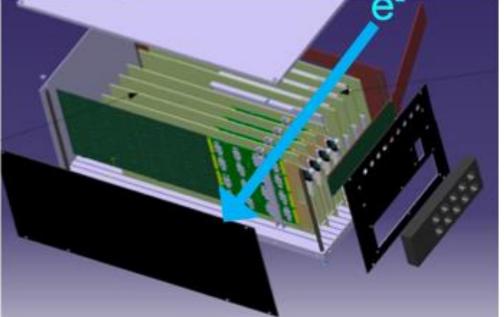
_					
	Milestone	Date	Object	Details	REM
	1st ASIC proto	2007	SK1 on FEV4	36 ch, 5 SCA	proto, lim @ 2000 mips
	1st ASIC	2009	SK2	64ch, 15 SCA	3000 mips
	1st prototype of a PCB	2010	FEV7	8 SK2	СОВ
	1 st working PCB	2011	FEV8	16 SK2 (1024 ch)	CIP (QGFP)
	1 st working ASU in BT	2012	FEV8	4 SK2 readout (256ch)	best S/N - 14 (HG), no PP retriggers 50-75%
	1st run in PP	2013	FEV8-CIP		BGA, PP
	1st full ASU	2015	FEV10	4 units on test board 1024 channel	S/N - 17-18 (High Gain) retrigger - 50%
	1st SLABs	2016	Slab:FEV11	10 units, 320µm	
	pre-calo	2017	FEV 11	7 units	S/N - 20 (12) _{rig.} 6- 8 % masked
	1 st technological ECAL	2018	10 SLAB: 5 FEV11 320µm 5 FEV13 650*µm Compact stack	SK2 & SK2a (ɔtiming)	Improved S/N (1/64 masked ch.) Timing
/c	1s COB	2019	FEV12-COB	1 wafer, 500µm	S/N - 22

Vincent.Boudry@in2p3.fr ILD SiW-ECAL Adaptative design | LCW 1" COB 2019 FEV12-COB 1 wafer, 500µm S/N - 22

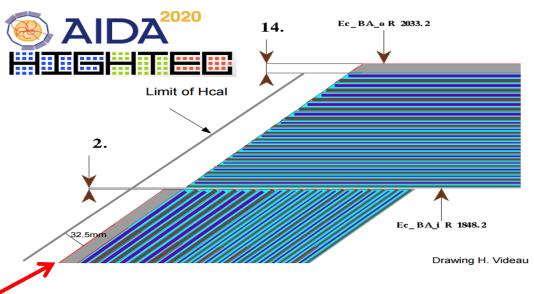
LCWS2019 - Sendai (Japan)

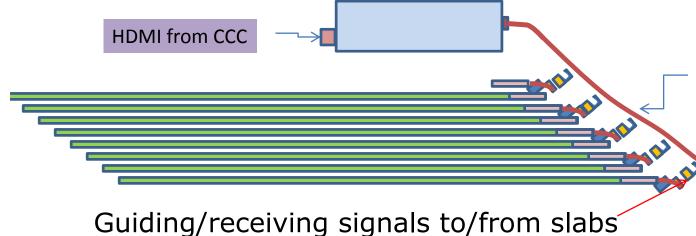
Beam Test 2019 @ DESY

- Beam time:
 - 24th June 7th July at DESY test beam facility
 - e- beam: 1 5 GeV
- Presence from:

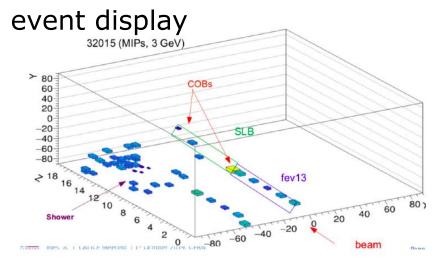


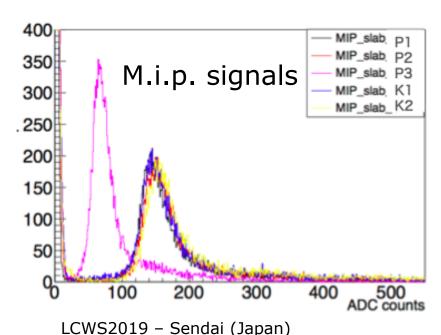
Support & Hardware from:




Towards a system for a final detector

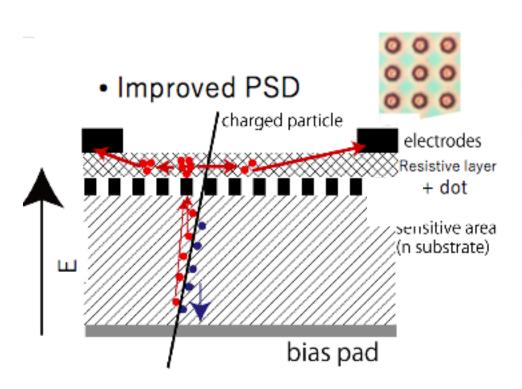
NEW: SL board

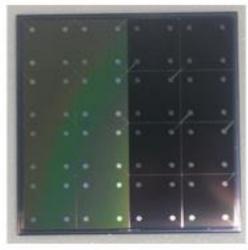


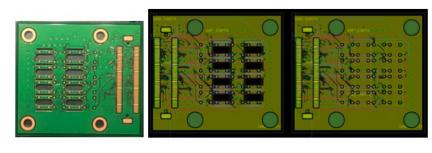


Approximately 6 cm between Ecal and Hcal

Testbeam results for Si-W ECAL




Summary and outlook


- Successful beam test 2019
 - · Smooth operation of readout
- First systematic study of Chip-on-Board PCB in beam
 - Flatness good enough for wafers gluing (critical item of R&D)
 - · Encouraging results
 - No serious issues discovered
 - · Good MIPs w/o additional capacitances
 - Additional capacitances improve performance
- Still a number of tests to be done
 - 1 wafer -> 4 wafers
 - · Tests with power pulsing
- Towards new design
 - Integration of stabilising capacitances
- New SKIROC design (Flip-Chip dixit de la Taille)
- · Discussions with EOS (Korea) beginning of December
 - No immediate new production but rather feedback and brainstorming

Position sensitive silicon detector

- Part of the Si-W calorimeter
- Reconstruct the position & direction of the photon
- PSD1 cell size: 5.5×5.5 mm²; sensor thickness: 650 μm

New boards

PSD₁

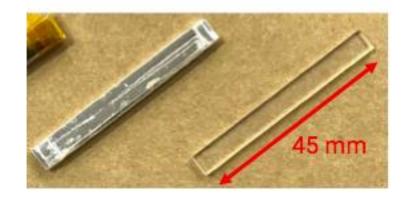
- Preparations for test beam
- Different versions of PSDs

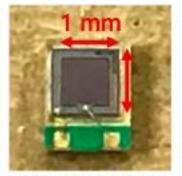
Scintillator ECAL

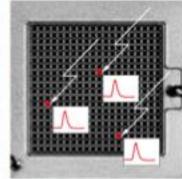
- Sensor layers of ScECAL consists of segmented scintillator strip with SiPM
 - Scintillator strip

Plastic scintillator wrapped by reflector film Size: 45 mm x 5 mm x 2 mm

SiPM (MPPC®, PPD, GAPD, ...)


Photosensitive area: 1 mm x 1 mm


Gain: 105 (PMT: 106-107)


Pixel pitch: 10 um or 15 um

The smaller pixel pitch SiPM has, The larger dynamic range it has. So small-pitch SiPM has less effects of saturations.

Advantage: low operation voltage (<100 V), high magnetic filed resistance

SiPM: S12571-015P (HAMAMATSU)

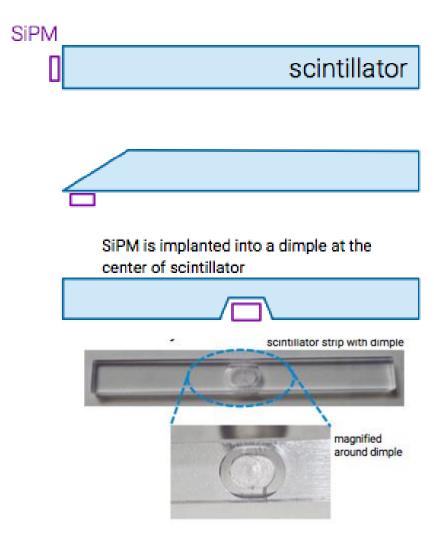
HAMAMATSU, Opto-semiconductor hand bool

E_{loss} ∝ # of detected photon

Scintillator ECAL

Side readout

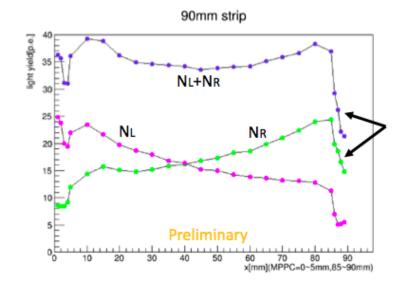
- Good light yield for MIP
- Dead space about 2%, bad light yield uniformity

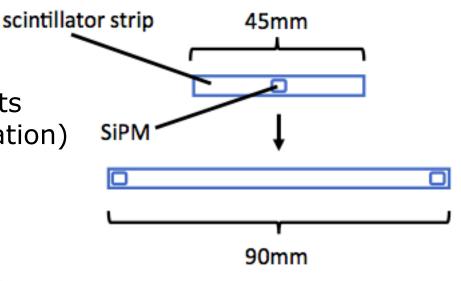

Bottom readout

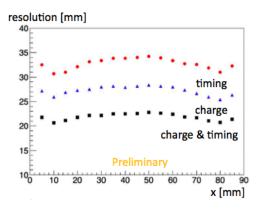
- No dead space, good light yield uniformity
- Less light yield for MIP

Dimple readout (NEW: proposed by USTC & IHEP)

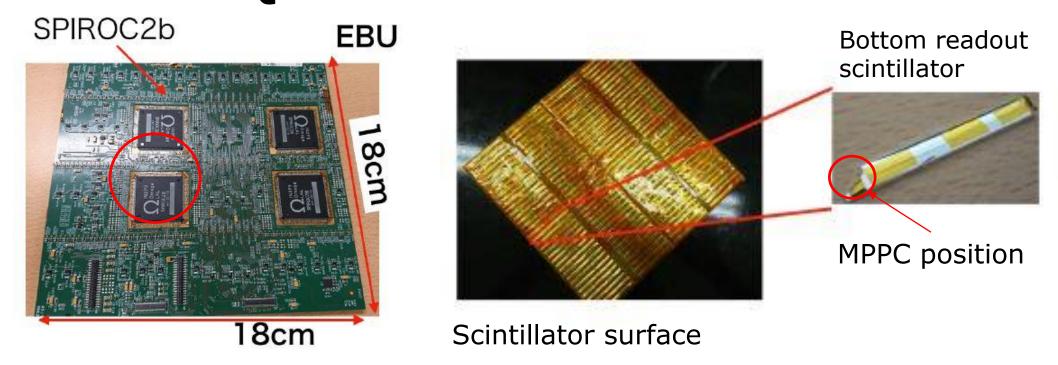
- No dead space
- Easy to mass-produce


The dimple readout scintillator has good light yield and good uniformity


Sc ECAL with double SiPM readout

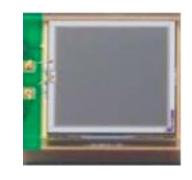

Some possible advantages:

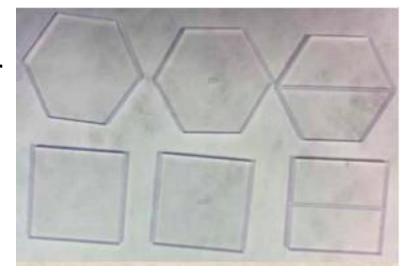
- Eliminating noise by coincidence
- Higher light yield by summing two SiPMreadouts
- Even lower light yield for each SiPM(less saturation)
- Operational even if one of SiPMs is dead
- Position by charge or timing differences



- Large N p.e. 35
- Single readout N p.e. 20
- Edge effect not yet understood
- Position resolution ~20 mm

DAQ for the Sc ECAL: EBU

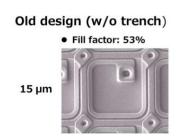


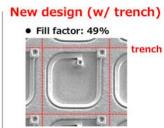

- EBU (ECAL Basic Unit) is fabricated by DESY.
- EBU consists of SPIROC surface and scintillator surface.
- One EBU is a PC board with 144 MPPCs and 144 scintillators.
- One EBU is equipped with four ASICs called SPIROC2b developed by OMEGA group.
- One SPIROC2b can control 36ch of MPPCs and adjust each applied voltage for a channel.

Scintillator Tiles MPPCs

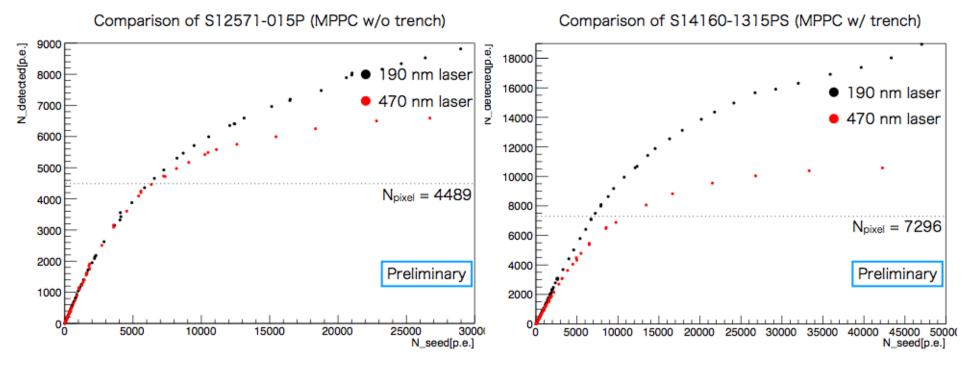
Both hexagonal and squared tiles Using 4th generation MultiPixelPhotonCounter

MPPC	S14160-1310	S14160-3010	S14160-1315	S14160-3015
Sens. area	1.3 x 1.3 mm ²	3 x 3 mm ²	1.3 x 1.3 mm ²	3 x 3 mm ²
Pixel size	10 μ	10 μ	15 μ	15 μ
# pixels	16675	90000	7296	40000
V_b	~43	42.1	42.5	42.2
Dark rate	120 kHz	700 kHz	120 kHz	700 kHz
gain	1.8x10 ⁵	1.8x10 ⁵	3.6x10 ⁵	3.6x10 ⁵
C at Vop	100 pF	530 pF	100 pF	530 pF

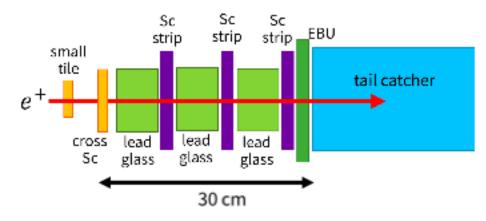


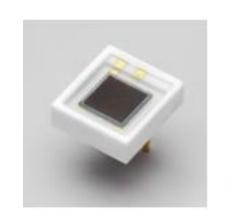


- Readout of hexagonal tiles look promising
- Performance of hexagonal tiles with center-mount readout
 - Uniformity within ±6% except for center position
 - Dimple was too small to insert MPPC fully, → light yield in the center is 1.68 times larger than the average → need to enlarge dimple and redo measurements


Saturation of SiPM

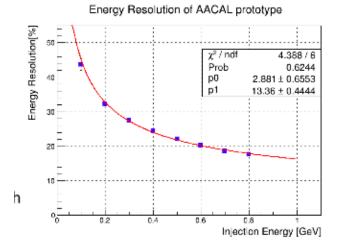
SiPM saturation can be an issue for Sc-ECAL Studied for two MPPCs w(w/o) trench

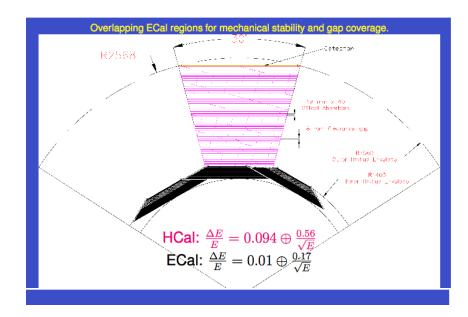

14


LCWS2019 - Sendai (Japan) Peter Kluit (Nikhef)

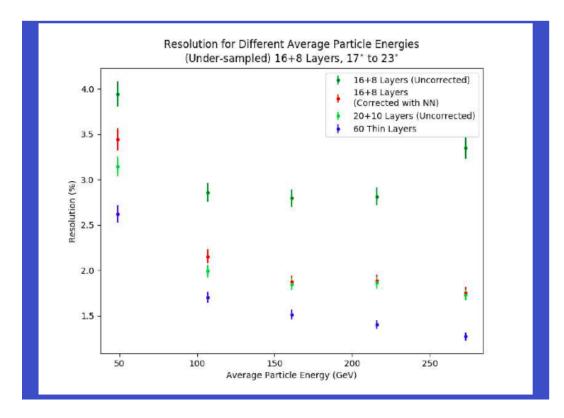
Sampling Calorimeter AACAL

Lead glass segmented 3x3x4 cm³ MPPC size 3x3 mm² Active Absorber CAL (AACAL)


- The prototype shows good linearity.
- The energy resolution of prototype is 13.4 %/ \sqrt{E} + 2.9 % .


MPPC

Lead Glass

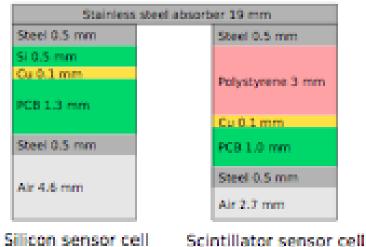

Leakage correction for SiD

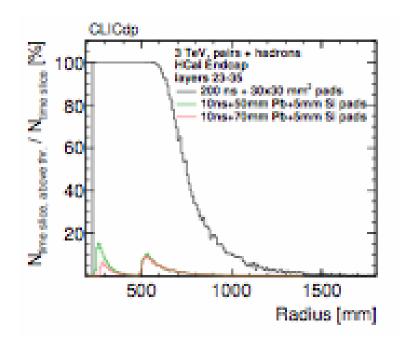
Geometry of Calorimeters

Note special overlap zone

Problem bad e.m. E resolution not whole e.m. shower measured

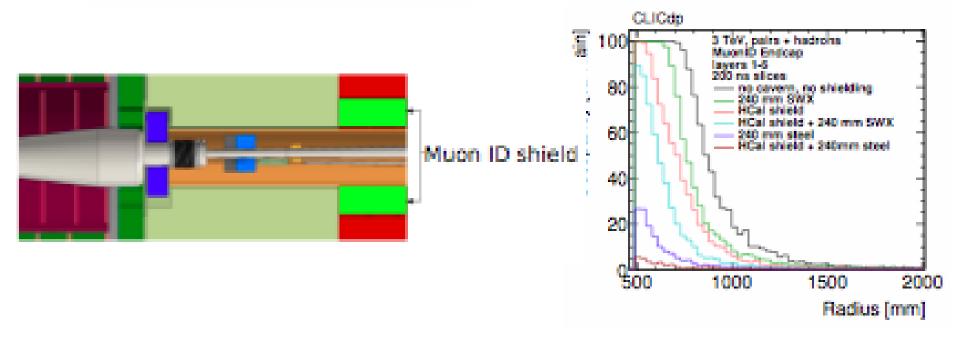
After correction (NN) improved


HCal shielding for CLIC



HCal endcap - two granularity regions

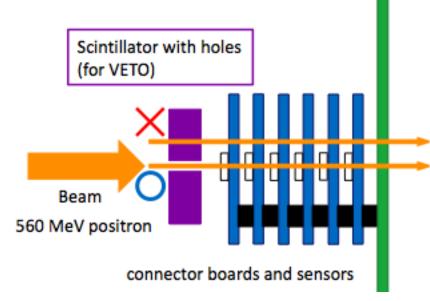
 Two granularity regions for HCal endcap: one with scintillator, one with silicon sensors

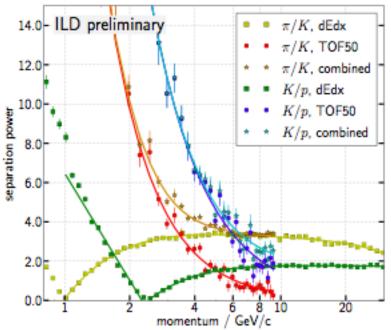

Cominit Arominist HCel and MuoniD occupancies mitigation - 29-18-2019 17 / 21

Muon shielding for CLIC

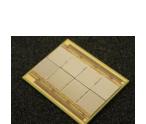
MuonID shielding options

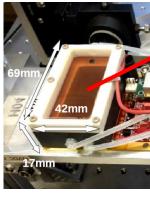
- Borated polyethylene (SWX) does not provide efficient shielding, even when layered with lead as in the HCal shield
- Best solution: the HCal endcap shield + 240 mm of stainless steel


Deminik Arominski HCal and MuoniD occupancies mitigation - 29-18-2029 19 / 21

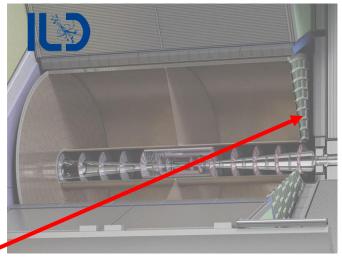

Precise timing with silicon sensors

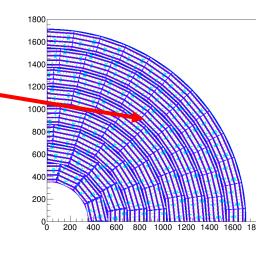
- Low Gain avalanche photo diode (LGAD)
- Allows particle ID using Time of Flight
- LGADs are part of LHC upgrades σ ~30 ps
- Several (8) avalanche photo diodes tested
- Preparations for a test beam


stacking connector boards



Pixel TPC


(Octopuce)



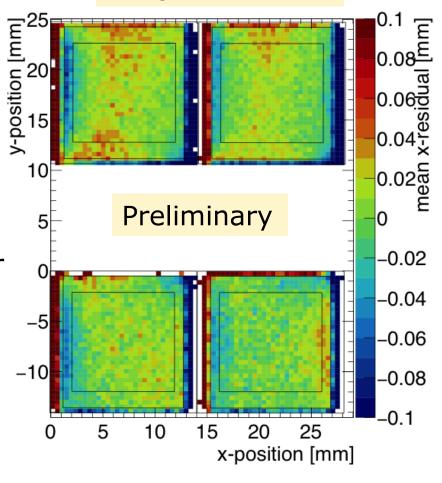
TPC plane

(TimePix1) (2007-14)

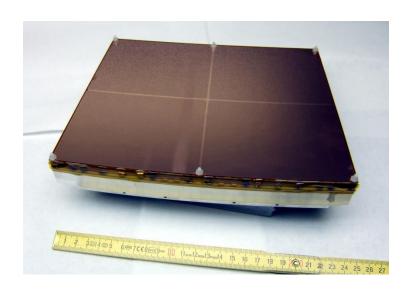
2017

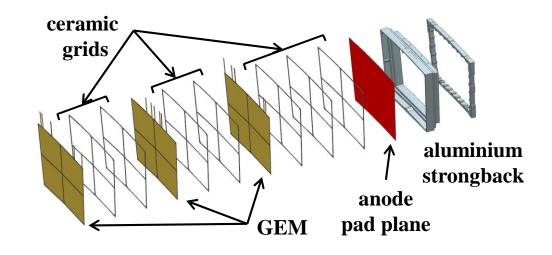
TPX3 chip

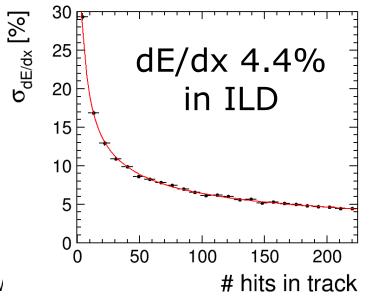
2018


LCWS2019 - Sendai (Japan)

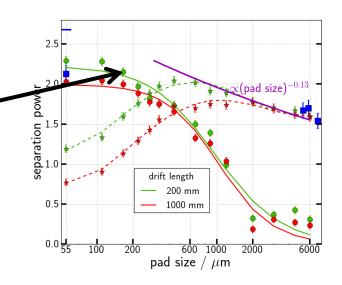
Peter Kluit (Nikhef)


Quad and 8-Quad module

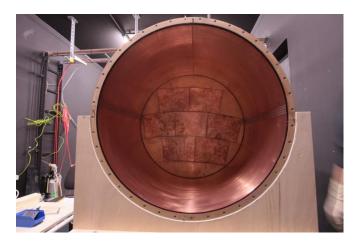

- A Quad detector was designed and the results from the 2018 test beam presented
 - Small edge deformations between two chips are observed
 added guard wires to the module to obtain a homogeneous field
 - After correcting the deformations in are less than 15 μm
- An 8-Quad module has been designed with guard wires
 - Deformations (no corrections) are shown to be < 15 µm
 - Test beams are being planned at DESY and Bonn
- A pixel pixel TPC has become a realistic viable option for experiments
 - High precision tracking in the transverse and longitudinal planes, dE/dx by electron and cluster counting, excellent two track resolution, digital readout that can deal with high rates

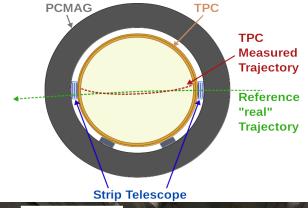

One quad in 8-Quad module

DESY GEM module



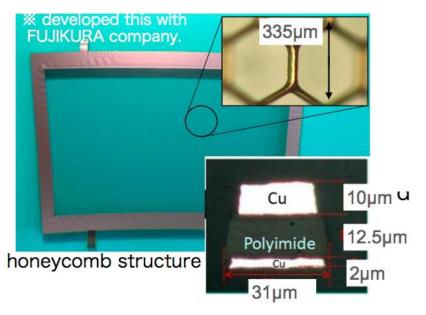
A better dEdx resolution?

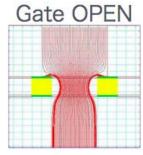

smaller pad size

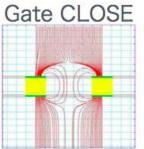

DESY Large Prototype TPC

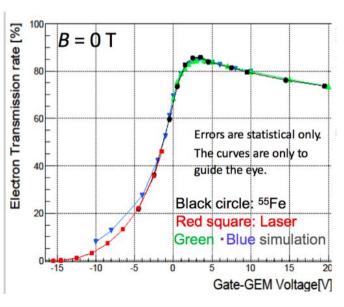
New version field cage

Silicon Beam telescope PCMAG



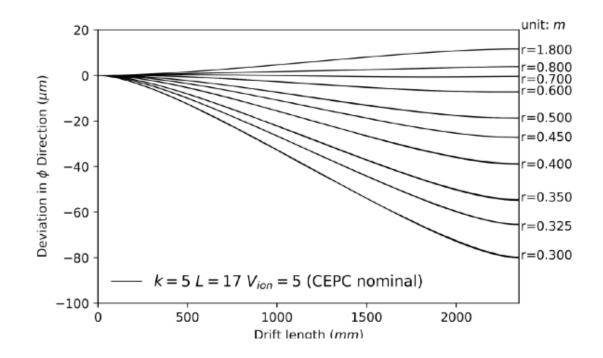

GEM Gating device


Ion Feed back problem

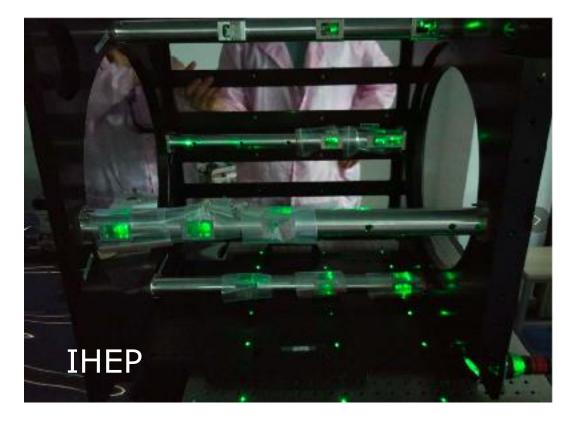


Gating device

Electron transmission

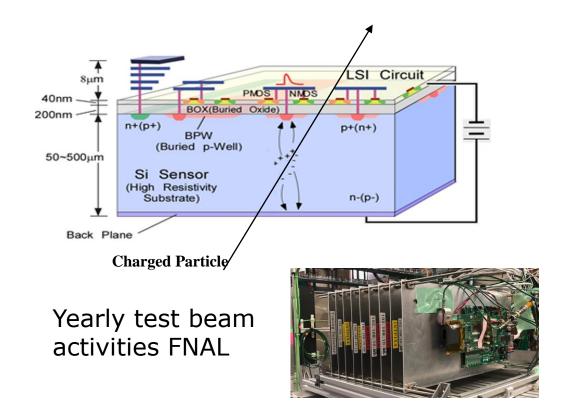

Measured to be ~86 % with gating GEM.

yumia@post.kek.jp


TPC for CEPC

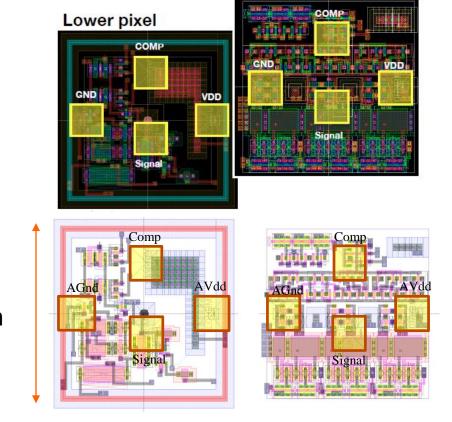
CEPC running at the Z
Deformations due to Ion back flow

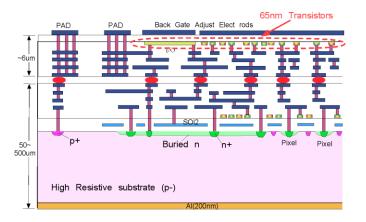
Simulation of deviation with IBF (k=Gain×IBF) @CEPC



Laser calibration of a TPC

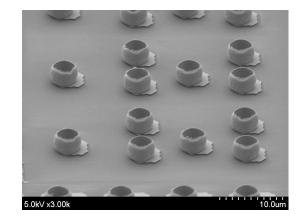
Silicon: SOI based pixel detector


Monolithic sensor using silicon-on-insulator (SOI) technology: Lapis 0.20 mm FD-SOI Pixel nodes (in handle Si) are electrically connected to readout circuit (SOI layer) through small vias fabricated in a conventional LSI process. Pixel size v4 20 µm x 20 µm


	Ver. 1	Ver. 2	Ver. 3	Ver. 4
Produced /Tested*	2016/20	2017/20 18	2018/20	2018/20 20
Wafer	SOI	DSOI	DSOI	DSOI
Pixel size (μm²) (μm)	20x20	25x25	30x30	20x20
Chip size (mm ²) (µm)	3x3 500	4.5x4.5 75	6x6 300	4.5x4.5 300

Silicon: SOFIST-4 3-D stacking

Electronics circuits in two chips are fused using cylindrical micro-bumps to extend the circuit functionality in limited space.



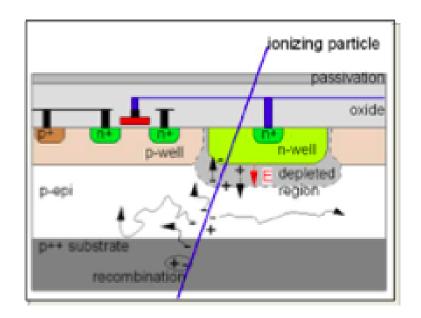
Upper pixel

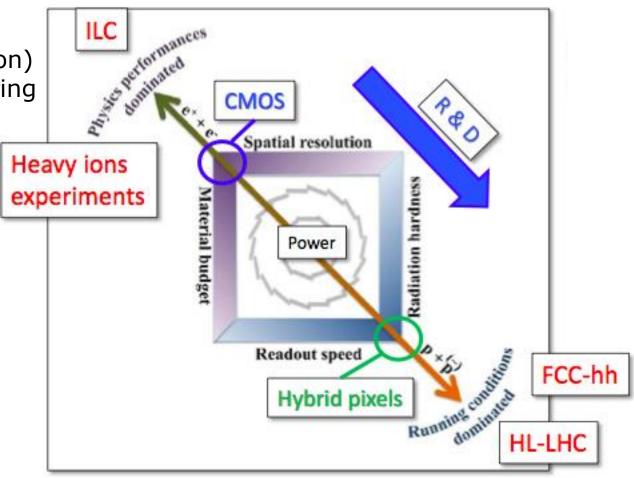
upper

lower

micro-bumps

4 mm


Silicon: CMOS pixel detector


• Monolithic (Signal created in low doped thin epitaxial layer ${\sim}10\text{--}30~\mu m)$

• Thermal diffusion of e- (Limited depleted region)

• Charge collection: N-Well diodes (Charge sharing resolution)

Continuous charge collection (No dead time)

Silicon: CMOS pixel detector

Keep excellent spatial resolution and push towards better time resolution

Strong synergy between Higgs factories and Heavy ion experiments

	ULTIMATE	ALPIDE	MIMOSIS	PSIRA proposal
	STAR-PXL	ALICE-ITS	CBM-MVD	ILD-VXD
Data taking	2014-2016	>2021-2022	>2021	>2030
Technology	AMS-opto 0.35 μm	0.18 μm	0.18 μm	0.18 μm (conservative) < 0.18 μm ?
	4M	HR, V _{bias} ~-6V Deep P-well	HR, Deep P-well	?
Architecture	Rolling shutter + sparsification + binary output	In pixel discri.	Asynchronous r.o. In pixel discri.	Asynchronous r.o. (conservative)
Pitch (μm²) / Sp. Res.	20.7 x 20.7 / 3.7	27 x 29 / 5	22 x 33 / <5	~ 22 /~ 4
Time resolution (μs)	~185	5-10	5	1-4

MIMOSIS towards ILC vertex detector

```
4 prototypes:
 MIMOSIS-0: = 2 regions

✓ Back from foundry (2017)

    ✓ Test (2018-2019)

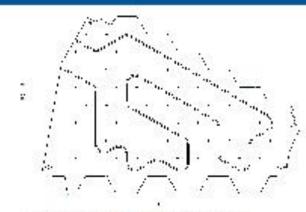
    Testability

    Priority encoder frequency

    Radiation hardness design (SEU)

  MIMOSIS-1: 1st prototype of
   complete sensor

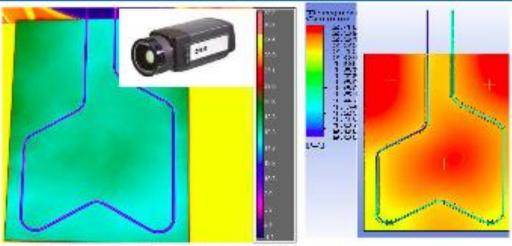
✓ About to be Submitted


✓ Tested during 2020

 MIMOSIS-2:
    ✓ 2021
                                                                        MIMOSIS
  MIMOSIS-3: final pre-production
                                                         504 x 1024 pixels = 16 super regions
   sensor
                                                         1 super-region = 4 read-out regions of 16 columns
                                                         2 columns = 1 data driven read-out
    ✓ >2022
                                                                   Every double-columns is read out in serial
  ⇒ architecture adaptable to a fast sensor for an ILC vertex detector
                                                                    Digital Periphery + PAD ring
                                        A.Besson, Strasboul
LCWS 2019, Sendai
```

Active cooling → 'Continuous colliders'

Si-W ECAL


R&D using CMS studies (Courtesy of Th. Pierre-Emile from CMS-LLR group)

Copper plate prototype dimensions information

Pipe insertion on a cooling prototype for FEA correlation

Vincent.Boudry@in2p3.fr

- Pipe insertion process introduces some efficiency loss due to the thermal contact resistance.
- The benefit remains significant with regard to a passive cooling

 Thermal static CFD analysis thermal field example using Fluent with 100W extracted and water mass flow rate of 7g/s through 1,5mm ID pipe

ILD SiW-ECAL Adaptative design | LCWS'2019 | 29/10/2019

+3mm of Copper/Layer

= 2× cont. operation of a SLAB