5-D Dual-readout Calorimetry for Future Experiments

Corrado Gatto INFN – Napoli Northern Illinois University

Rational for Multiple-readout Calorimetry

- The multiple-readout techniques intend to measure separately the individual components of an hadronic shower: electromagnetic, charged hadronic and neutrons
- Each of the component fluctuates and contributes to the fluctuations in energy measurement
- The measurement is done per each shower. Therefore, the compensation to the total energy occurs event-by-event

$$E_{HCAL} = \frac{\eta_s \cdot (E_s) \cdot (\eta_c - 1) - \eta_c \cdot (E_c) \cdot (\eta_s - 1)}{\eta_c - \eta_s}$$

Dual Readout Calorimetry from a Different Perspective

Triple-readout

- The electromagnetic and charged hadronic components of the shower are evaluated via S and Č. The neutron component N is evaluated independently (Boron loaded fibers, waveform analysis, etc.)
- The compensation is total since the fluctuations of neutrons is accounted for
- S, Č and N are independent: they provide the total energy with the following formula

ADRIANO for High Intensity Experiments

- Typical electromagnetic energy resolution: $5\%/\sqrt{E}$ (includes effects from the electronics)
- Particle ID from S vs Č: neutron/gamma separation
 at 3σ level
- Fine granularity: it can be used as a range stack for muons and/or pions
- Sensitivity > 10 MeV (layout for ORKA and REDTOP experiments)

ADRIANO PID @ 100MeV

ADRIANO for ORKA Construction

WLS + scintillator

WLS + glass

ADRIANO-2014

- Two versions built: scifi and scintillating plates
- 10 x 8 x105 cm3 long prototypes, about 50 Kg each
- 4 cells total, front and back readout
- Hopefully , we will be able to test the dual-readout concept with integrally active detectors

ADRIANO 2014A: 8 grooves

ADRIANO 2014B: 23 grooves

3/4/2020

C. Gatto - INFN & NIU

High Energy vs High Intensity Layouts

High Energy

- Detection of Hadronic and EM showers with large S and Č light production
- Optimized for maximum shower containment (i.e. max detector density)

High Intensity

- Detection of EM showers only with small S and Č light production
- Optimized for high sensitivity in the 10 MeV range (i.e. max detector granularity)

- Thicker glass
- Thin scintillating fibers or ribbons
- Fewer WLS fibers

- Thicker scintillator plates
- More WLS fibers

16 Prototypes Performance Summary

Prototype	Year	Glass	gr/cm ³	L. Y./GeV	Notes
5 slices, machine grooved, unpolished, white	2011	Schott SF57HHT	5.6	82	SiPM readout
5 slices, machine grooved, unpolished, white, v2	2011	Schott SF57HHT	5.6	84	SiPM readout
5 slices, precision molded, unpolished, coated	2011	Schott SF57HHT	5.6	55	15 cm long
2 slices, ungrooved, unpolished, white wrap	2011	Ohara BBH1	6.6	65	
5 slices, scifi silver coated, grooved, clear, unpolished	2011	Schott SF57HHT	5.6	64	15 cm long
5 slices, scifi white coated, grooved, clear, unpolished	2011	Schott SF57HHT	5.6	120	
2 slices, plain, white wrap	2011	Ohara	7.5	-	DAQ problem
10 slices, white, ungrooved, polished	2012	Ohara PBH56	5.4	30	DAQ problems
10 slices, white, ungrooved, polished	2012	Schott SF57HHT	5.6	76	
5 slices, wifi Al sputter, grooved, clear, polished	2012	Schott SF57HHT	5.6	30	2 wls/groove
5 slices, white wrap, ungrooved, polished	2012	Schott SF57HHT	5.6	158	Small wls groove
ORKA barrel	2013	Schott SF57	5.6	2500/side	molded
ORKA endcaps	2013	Schott SF57	5.6	4000	molded
10 slices – 6.2 mm thick, scifi version	2014	Schott SF57	5.6	338	molded
10 slices – 6.2 mm thick, sci-plate version	2014	Schott SF57	5.6	354	molded
10 slices - 6.2 mm thick, sci-ribbon version	2015	Schott SF57	5.6	354	molded

Detector Response

	ADRIANO 2014A	ADRIANO 2014B
Scintillation L.Y.	523 pe/GeV	256 pe/GeV
Čerenkov L.Y.	354 pe/GeV	338 pe/GeV
% scint. energy	6.0% @ 4 GeV	1.14% @4GeV
% Cher. energy	94% @4GeV	98.86% @4 GeV
% visible energy	89.7% @4 GeV	89.7% @4GeV
Scint. pe/deposited energy [MeV]	0.215 GeV@ 4gev Or 18 pe/MeV	0.041 GeV@ 4gev or 44 pe/ MeV
Cher. pe/deposited energy [MeV]	3.37 GeV@ 4gev Or 0.36 pe/MeV	3.52 GeV@ 4gev Or 0.4 pe/MeV

Light yield goals for 30%/√E resolution achieved!

New Directions in Calorimetry

Summary

We have identified three major detector research areas where the US can contribute to future high energy physics program needs.

PRD #1 High precision 5D calorimetry with a resolutions of ~15%/VE EM and ~35%/VE hadronic and shower ΔT < 30 ps for linear and circular e⁺e⁻ machines. Timescale ready in 10 years.

PRD #2 High precision 5D calorimetry for *hh* machines with an EM resolution of < 10%/VE and <30%/VE hadronic $\Delta T < 5$ ps in an irradiation environment of > 10^{17} n/cm². Timescale ready in 20 years.

PRD #3 Ultrafast calorimetry media with order 1 ps precision for low-energy electrons and photons.

12/11/19

Calorimetry BRN

From ADRIANO to ADRIANO2

ADRIANO-2015

ADRIANO2 radiator (diagram)

- Log style replaced by tiles
- light capture with wls fiber replaced by on-tile Sipm's
- FEE on tile (ex. Weeroc)

Slicing & Polising

Mar 4, 2020 ll constructions at NIU (Geology + Chemistry Dept.) 18

Making Dimples

Making Dimples

- Software installation and calibration
- > No software to write g-code for this machine

The Polished Tile

Unpolished & polished dimples

Coating with different materials Casting resin GAC-200 Glazing

The final Tile

Test Beam Radiators

 We had chance to test 3 Cerenkov radiators: Barium sulfate coated and ESR wrapped (with optical goo) & ESR wrapped with no optical goo

Reflectivity Measurements

Reflectivity :ESR-2000 &Barium sulfate paint(in oil & water-based binders)

Reflectivity(%R) vs wavelength (nm)

January 2020 Test Beam at Fermilab

Preliminary Analysis

Data Analysis: <pe>vs distance(mm) of slices

 $f(x) = 4.5e^{-0.06x}$, which gives 1/e of initial value

at x = 1/0.06 = 16.67mm

Fast Dual Readout ADRIANO2

- 1 GHz interaction rate -> Cerenkov process a winner
- 1/200 η mesons produced -> large background

ADRIANOSci_over_CerNeg

Conclusions

- T1015 started operation in 2010 and still rolling
- 16+1 detectors succesfully built and tested.
- <u>We have mastered the technique of collecting light from glass</u> with WLS fibers.
- Čerenkov ligth yield more than adequate for 25-30%/sqrt(E) calorimetry. We have shown that it can be used for EM calorimetry as well
- Focus for future is on a 5D, tiled version of ADRIANO based on Calice techniques
- A proposal has been submitted to DOE for R&D targeting the EIC and REDTOP
- Would be nice to have Calice opening the doors to dual-readout

Mar 4, 2020

Backup Slides

